Erythropoietin Neuroprotection in the Term and Preterm Infant: Safety and Efficacy

  • Eric J. Demers
  • Sandra E. Juul


The neonatal brain is particularly susceptible to a variety of insults, particularly hypoxia-ischemia (HI). Developmental differences occur during brain maturation and contribute to variable patterns of brain injury in preterm and term neonates after HI. Following HI, a multifactorial cascade is initiated that injures the developing brain and can lead to significant morbidity and mortality. Despite intense investigation, no effective interventions are currently available to lessen the devastating impact of neonatal brain injury. Erythropoietin (EPO), a hematologic cytokine, has shown promise as a neuroprotective agent in both in vitro and in vivo animal studies and continues to be actively investigated. In this chapter, we explore mechanisms of brain injury following HI in neonates, highlight differential injury responses that occur during development, and discuss the promising role of EPO as a therapeutic agent after neonatal HI.

Key words

Hypoxia-ischemia (HI) Brain Injury Neonate Preterm infant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adcock LM, Yamashita Y, Goddard-Finegold J, Smith CV (1996) Cerebral hypoxia-ischemia increases microsomal iron in newborn piglets. Metab Brain Dis 11:359–367.PubMedGoogle Scholar
  2. Agnello D, Bigini P, Villa P, Mennini T, Cerami A, Brines ML, Ghezzi P (2002) Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis. Brain Res 952:128–134.PubMedGoogle Scholar
  3. Akisu M, Tuzun S, Arslanoglu S, Yalaz M, Kultursay N (2001a) Effect of recombinant human erythropoietin administration on lipid peroxidation and antioxidant enzyme(s) activities in preterm infants. Acta Med Okayama 55:357–362.PubMedGoogle Scholar
  4. Akisu M, Kullahcioglu Girgin F, Baka M, Husseyinov A, Kultursay N (2001b) The role of recombinant human erythropoietin in lipid peroxidation and platelet-activating factor generation in a rat model of necrotizing enterocolitis. Eur J Pediatr Surg 11:167–172.PubMedGoogle Scholar
  5. Alafaci C, Salpietro F, Grasso G, Sfacteria A, Passalacqua M, Morabito A, Tripodo E, Calapai G, Buemi M, Tomasello F (2000) Effect of recombinant human erythropoietin on cerebral ischemia following experimental subarachnoid hemorrhage. Eur J Pharmacol 406:219–225.PubMedGoogle Scholar
  6. Archibald K, Molnar E, Henley JM (1999) Differential changes in the subcellular distribution of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate and N-methyl-D-aspartate receptors in neonate and adult rat cortex. Neurosci Lett 270:49–52.PubMedGoogle Scholar
  7. Ashley RA, Dubuque SH, Dvorak B, Woodward SS, Williams SK, Kling PJ (2002) Erythropoietin stimulates vasculogenesis in neonatal rat mesenteric microvascular endothelial cells. Pediatr Res 51:472–478.PubMedGoogle Scholar
  8. Ashwal S, Cole DJ, Osborne S, Osborne TN, Pearce WJ (1995) A new model of neonatal stroke: reversible middle cerebral artery occlusion in the rat pup. Pediatr Neurol 12:191–196.PubMedGoogle Scholar
  9. Assandri R, Egger M, Gassmann M, Niggli E, Bauer C, Forster I, Gorlach A (1999) Erythropoietin modulates intracellular calcium in a human neuroblastoma cell line. J Physiol (Lond) 516:343–352.PubMedGoogle Scholar
  10. Aydin A, Genc K, Akhisaroglu M, Yorukoglu K, Gokmen N, Gonullu E (2003) Erythropoietin exerts neuroprotective effect in neonatal rat model of hypoxic-ischemic brain injury. Brain Dev 25:494–498.PubMedGoogle Scholar
  11. Back SA, Gan X, Li Y, Rosenberg PA, Volpe JJ (1998) Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci 18:6241–6253.PubMedGoogle Scholar
  12. Back SA, Luo NL, Borenstein NS, Volpe JJ, Kinney HC (2002) Arrested oligodendrocyte lineage progression during human cerebral white matter development: dissociation between the timing of progenitor differentiation and myelinogenesis. J Neuropathol Exp Neurol 61:197–211.PubMedGoogle Scholar
  13. Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21:1302–1312.PubMedGoogle Scholar
  14. Barker DJ (2000) In utero programming of cardiovascular disease. Theriogenology 53:555–574.PubMedGoogle Scholar
  15. Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2:577–580.PubMedGoogle Scholar
  16. Barres BA, Hart IK, Coles HS, Burne JF, Voyvodic JT, Richardson WD, Raff MC (1992) Cell death in the oligodendrocyte lineage. J Neurobiol 23:1221–1230.PubMedGoogle Scholar
  17. Becerra SP, Amaral J (2002) Erythropoietin—an endogenous retinal survival factor. N Engl J Med 347:1968–1970.PubMedGoogle Scholar
  18. Benchoua A, Guegan C, Couriaud C, Hosseini H, Sampaio N, Morin D, Onteniente B (2001) Specific caspase pathways are activated in the two stages of cerebral infarction. J Neurosci 21:7127–7134.PubMedGoogle Scholar
  19. Bernaudin M, Marti HH, Roussel S, Divoux D, Nouvelot A, MacKenzie ET, Petit E (1999) A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 19:643–651.PubMedGoogle Scholar
  20. Bernaudin M, Bellail A, Marti HH, Yvon A, Vivien D, Duchatelle I, Mackenzie ET, Petit E (2000) Neurons and astrocytes express EPO mRNA: oxygen-sensing mechanisms that involve the redox-state of the brain. Glia 30:271–278.PubMedGoogle Scholar
  21. Bikfalvi A, Han ZC (1994) Angiogenic factors are hematopoietic growth factors and vice versa. Leukemia 8:523–529.PubMedGoogle Scholar
  22. Black SM, Bedolli MA, Martinez S, Bristow JD, Ferriero DM, Soifer SJ (1995) Expression of neuronal nitric oxide synthase corresponds to regions of selective vulnerability to hypoxiaischaemia in the developing rat brain. Neurobiol Dis 2:145–155.PubMedGoogle Scholar
  23. Bocker-Meffert S, Rosenstiel P, Rohl C, Warneke N, Held-Feindt J, Sievers J, Lucius R (2002) Erythropoietin and VEGF promote neural outgrowth from retinal explants in postnatal rats. Invest Ophthalmol Vis Sci 43:2021–2026.PubMedGoogle Scholar
  24. Bode-Boger SM, Boger RH, Kuhn M, Radermacher J, Frolich JC (1996) Recombinant human erythropoietin enhances vasoconstrictor tone via endothelin-1 and constrictor prostanoids. Kidney Int 50:1255–1261.PubMedGoogle Scholar
  25. Boylan GB, Young K, Panerai RB, Rennie JM, Evans DH (2000) Dynamic cerebral autoregulation in sick newborn infants. Pediatr Res 48:12–17.PubMedGoogle Scholar
  26. Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C, Itri LM, Cerami A (2000) Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A 97:10526–10531.PubMedGoogle Scholar
  27. Buemi M, Cavallaro E, Floccari F, Sturiale A, Aloisi C, Trimarchi M, Corica F, Frisina N (2003) The pleiotropic effects of erythropoietin in the central nervous system. J Neuropathol Exp Neurol 62:228–236.PubMedGoogle Scholar
  28. Buemi M, Allegra A, Corica F, Floccari F, D’Avella D, Aloisi C, Calapai G, Iacopino G, Frisina N (2000) Intravenous recombinant erythropoietin does not lead to an increase in cerebrospinal fluid erythropoietin concentration. Nephrol Dial Transplant 15:422–423.PubMedGoogle Scholar
  29. Buescher U, Hertwig K, Wolf C, Dudenhausen JW (1998) Erythropoietin in amniotic fluid as a marker of chronic fetal hypoxia. Int J Gynaecol Obstet 60:257–263.PubMedGoogle Scholar
  30. Calapai G, Marciano MC, Corica F, Allegra A, Parisi A, Frisina N, Caputi AP, Buemi M (2000) Erythropoietin protects against brain ischemic injury by inhibition of nitric oxide formation. Eur J Pharmacol 401:349–356.PubMedGoogle Scholar
  31. Campana WM, Myers RR (2001) Erythropoietin and erythropoietin receptors in the peripheral nervous system: changes after nerve injury. Faseb J 15:1804–1806.PubMedGoogle Scholar
  32. Campana WM, Myers RR (2003) Exogenous erythropoietin protects against dorsal root ganglion apoptosis and pain following peripheral nerve injury. Eur J Neurosci 18:1497–1506.PubMedGoogle Scholar
  33. Campana WM, Misasi R, O’Brien JS (1998) Identification of a neurotrophic sequence in erythropoietin. Int J Mol Med 1:235–241.PubMedGoogle Scholar
  34. Carlini RG, Reyes AA, Rothstein M (1995a) Recombinant human erythropoietin stimulates angiogenesis in vitro. Kidney Int 47:740–745.PubMedGoogle Scholar
  35. Carlini RG, Gupta A, Liapis H, Rothstein M (1995b) Endothelin-1 release by erythropoietin involves calcium signaling in endothelial cells. J Cardiovasc Pharmacol 26:889–892.PubMedGoogle Scholar
  36. Carlini RG, Alonzo EJ, Dominguez J, Blanca I, Weisinger JR, Rothstein M, Bellorin-Font E (1999) Effect of recombinant human erythropoietin on endothelial cell apoptosis. Kidney Int 55:546–553.PubMedGoogle Scholar
  37. Casadevall N (2002) Antibodies against rHuEPO: native and recombinant. Nephrol Dial Transplant 17Suppl 5:42–47.PubMedGoogle Scholar
  38. Casadevall N (2003) Pure red cell aplasia and anti-erythropoietin antibodies in patients treated with epoetin. Nephrol Dial Transplant 18Suppl 8:viii37–41.PubMedGoogle Scholar
  39. Catania MA, Marciano MC, Parisi A, Sturiale A, Buemi M, Grasso G, Squadrito F, Caputi AP, Calapai G (2002) Erythropoietin prevents cognition impairment induced by transient brain ischemia in gerbils. Eur J Pharmacol 437:147–150.PubMedGoogle Scholar
  40. Cavazzuti M, Duffy TE (1982) Regulation of local cerebral blood flow in normal and hypoxic newborn dogs. Ann Neurol 11:247–257.PubMedGoogle Scholar
  41. Celik M, Gokmen N, Erbayraktar S, Akhisaroglu M, Konakc S, Ulukus C, Genc S, Genc K, Sagiroglu E, Cerami A, Brines M (2002) Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc Natl Acad Sci U S A 99:2258–2263.PubMedGoogle Scholar
  42. Chahal H, D’Souza SW, Barson AJ, Slater P (1998) Modulation by magnesium of N-methyl-D-aspartate receptors in developing human brain. Arch Dis Child Fetal Neonatal Ed 78:F116–120.PubMedGoogle Scholar
  43. Chattopadhyay A, Choudhury TD, Bandyopadhyay D, Datta AG (2000) Protective effect of erythropoietin on the oxidative damage of erythrocyte membrane by hydroxyl radical. Biochem Pharmacol 59:419–425.PubMedGoogle Scholar
  44. Chavez JC, LaManna JC (2002) Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: potential role of insulin-like growth factor-1. J Neurosci 22:8922–8931.PubMedGoogle Scholar
  45. Chikuma M, Masuda S, Kobayashi T, Nagao M, Sasaki R (2000) Tissue-specific regulation of erythropoietin production in the murine kidney, brain, and uterus. Am J Physiol Endocrinol Metab 279:E1242–1248.PubMedGoogle Scholar
  46. Chin K, Yu X, Beleslin-Cokic B, Liu C, Shen K, Mohrenweiser HW, Noguchi CT (2000) Production and processing of erythropoietin receptor transcripts in brain. Brain Res Mol Brain Res 81:29–42.PubMedGoogle Scholar
  47. Choi K (1998) Hemangioblast development and regulation. Biochem Cell Biol 76:947–956.PubMedGoogle Scholar
  48. Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G (1998) A common precursor for hematopoietic and endothelial cells. Development 125:725–732.PubMedGoogle Scholar
  49. Chong ZZ, Kang JQ, Maiese K (2003) Erythropoietin fosters both intrinsic and extrinsic neuronal protection through modulation of microglia, Aktl, Bad, and caspase-mediated pathways. Br J Pharmacol 138:1107–1118.PubMedGoogle Scholar
  50. Delanty N, Vaughan C, Frucht S, Stubgen P (1997) Erythropoietin-associated hypertensive posterior leukoencephalopathy. Neurology 49:686–689.PubMedGoogle Scholar
  51. Demers E, McPherson RJ, Juul SE (2004) Erythropoietin ameliorates brain injury following hypoxia ischemia in neonatal rats. Pediatric Research In Press.Google Scholar
  52. Digicaylioglu M, Lipton SA (2001) Erythropoietin-mediated neuroprotection involves crosstalk between Jak2 and NF-kappaB signalling cascades. Nature 412:641–647.PubMedGoogle Scholar
  53. Digicaylioglu M, Garden G, Timberlake S, Fletcher L, Lipton SA (2004) Acute neuroprotective synergy of erythropoietin and insulin-like growth factor I. Proc Natl Acad Sci U S A 101:9855–9860.PubMedGoogle Scholar
  54. Ditelberg JS, Sheldon RA, Epstein CJ, Ferriero DM (1996) Brain injury after perinatal hypoxia-ischemia is exacerbated in copper/zinc superoxide dismutase transgenic mice. Pediatr Res 39:204–208.PubMedGoogle Scholar
  55. du Plessis AJ, Johnston MV (1997) Hypoxic-ischemic brain injury in the newborn: cellular mechanisms and potential strategies for neuroprotection. Clin Perinatol 24:627–654.PubMedGoogle Scholar
  56. Dzietko M, Felderhoff-Mueser U, Sifringer M, Krutz B, Bittigau P, Thor F, Heumann R, Buhrer C, Ikonomidou C, Hansen HH (2004) Erythropoietin protects the developing brain against N-methyl-D-aspartate receptor antagonist neurotoxicity. Neurobiol Dis 15:177–187.PubMedGoogle Scholar
  57. Erbayraktar S, Grasso G, Sfacteria A, Xie QW, Coleman T, Kreilgaard M, Torup L, Sager T, Erbayraktar Z, Gokmen N, Yilmaz O, Ghezzi P, Villa P, Fratelli M, Casagrande S, Leist M, Helboe L, Gerwein J, Christensen S, Geist MA, Pedersen LO, Cerami-Hand C, Wuerth JP, Cerami A, Brines M (2003) Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc Natl Acad Sci U S A 100:6741–6746.PubMedGoogle Scholar
  58. Fatouros M, Dalekos GN, Mylonakis E, Vekinis G, Kappas AM (1999) Alterations in body weight, breaking strength, and wound healing in Wistar rats treated pre-and postoperatively with erythropoietin or granulocyte macrophage-colony stimulating factor: evidence of a previously unknown anabolic effect of erythropoietin? J Lab Clin Med 133:253–259.PubMedGoogle Scholar
  59. Fernandez AP, Alonso D, Lisazoain I, Serrano J, Leza JC, Bentura ML, Lopez JC, Manuel Encinas J, Fernandez-Vizarra P, Castro-Bianco S, Martinez A, Martinez-Murillo R, Lorenzo P, Pedrosa JA, Peinado MA, Rodrigo J (2003) Postnatal changes in the nitric oxide system of the rat cerebral cortex after hypoxia during delivery. Brain Res Dev Brain Res 142:177–192.PubMedGoogle Scholar
  60. Genc S, Akhisaroglu M, Kuralay F, Genc K (2002) Erythropoietin restores glutathione peroxidase activity in 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine-induced neurotoxicity in C57BL mice and stimulates murine astroglial glutathione peroxidase production in vitro. Neurosci Lett 321:73–76.PubMedGoogle Scholar
  61. Genc S, Kuralay F, Genc K, Akhisaroglu M, Fadiloglu S, Yorukoglu K, Fadiloglu M, Gure A (2001) Erythropoietin exerts neuroprotection in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated C57/BL mice via increasing nitric oxide production. Neurosci Lett 298:139–141.PubMedGoogle Scholar
  62. Gibson ME, Han BH, Choi J, Knudson CM, Korsmeyer SJ, Parsadanian M, Holtzman DM (2001) BAX contributes to apoptotic-like death following neonatal hypoxia-ischemia: evidence for distinct apoptosis pathways. Mol Med 7:644–655.PubMedGoogle Scholar
  63. Gorio A, Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, Cichetti C, Di Giulio AM, Vardar E, Cerami A, Brines M (2002) Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci U S A 99:9450–9455.PubMedGoogle Scholar
  64. Grasso G (2001) Neuroprotective effect of recombinant human erythropoietin in experimental subarachnoid hemorrhage. J Neurosurg Sci 45:7–14.PubMedGoogle Scholar
  65. Grasso G, Buemi M, Alafaci C, Sfacteria A, Passalacqua M, Sturiale A, Calapai G, De Vico G, Piedimonte G, Salpietro FM, Tomasello F (2002) Beneficial effects of systemic administration of recombinant human erythropoietin in rabbits subjected to subarachnoid hemorrhage. Proc Natl Acad Sci U S A 99:5627–5631.PubMedGoogle Scholar
  66. Greisen G (1997) Cerebral blood flow and energy metabolism in the newborn. Clin Perinatal 24:531–546.Google Scholar
  67. Grimm C, Wenzel A, Groszer M, Mayser H, Seeliger M, Samardzija M, Bauer C, Gassmann M, Reme CE (2002) HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med 8:718–724.PubMedGoogle Scholar
  68. Gunn AJ, Quaedackers JS, Guan J, Heineman E, Bennet L (2001) The premature fetus: not as defenseless as we thought, but still paradoxically vulnerable? Dev Neurosci 23:175–179.PubMedGoogle Scholar
  69. Hagberg H, Bona E, Gilland E, Puka-Sundvall M (1997) Hypoxia-ischaemia model in the 7-day-old rat: possibilities and shortcomings. Acta Paediatr Suppl 422:85–88.PubMedGoogle Scholar
  70. Hameed B, Shyamanur K, Kotecha S, Manktelow BN, Woodruff G, Draper ES, Field D (2004) Trends in the incidence of severe retinopathy of prematurity in a geographically defined population over a 10-year period. Pediatrics 113:1653–1657.PubMedGoogle Scholar
  71. Hamner S, Skoglosa Y, Lindholm D (1999) Differential expression of bcl-w and bcl-x messenger RNA in the developing and adult rat nervous system. Neuroscience 91:673–684.PubMedGoogle Scholar
  72. Hamrick SE, Ferriero DM (2003) The injury response in the term newborn brain: can we neuroprotect? Curr Opin Neurol 16:147–154.PubMedGoogle Scholar
  73. Haruda FD (2001) The structure of blood vessels in the germinal matrix and the autoregulation of cerebral blood flow in premature infants. Pediatrics 108:1050–1051.PubMedGoogle Scholar
  74. Hudome S, Palmer C, Roberts RL, Mauger D, Housman C, Towfighi J (1997) The role of neutrophils in the production of hypoxic-ischemic brain injury in the neonatal rat. Pediatr Res 41:607–616.PubMedGoogle Scholar
  75. Indiveri F, Murdaca G (2002) Immunogenicity of erythropoietin and other growth factors. Rev Clin Exp Hematol Suppl 1:7–11.Google Scholar
  76. Ismail N, Ikizler TA (1997) Erythropoietin-induced hypertension. J Med Liban 45:25–30.PubMedGoogle Scholar
  77. Ivacko JA, Sun R, Silverstein FS (1996) Hypoxic-ischemic brain injury induces an acute microglial reaction in perinatal rats. Pediatr Res 39:39–47.PubMedGoogle Scholar
  78. Jabs K, Harmon WE (1996) Recombinant human erythropoietin therapy in children on dialysis. Adv Ren Replace Ther 3:24–36.PubMedGoogle Scholar
  79. Janjua N, Mayer SA (2003) Cerebral vasospasm after subarachnoid hemorrhage. Curr Opin Crit Care 9:113–119.PubMedGoogle Scholar
  80. Jaquet K, Krause K, Tawakol-Khodai M, Geidel S, Kuck KH (2002) Erythropoietin and VEGF exhibit equal angiogenic potential. Microvasc Res 64:326–333.PubMedGoogle Scholar
  81. Jarskog LF, Gilmore JH (2000) Developmental expression of Bcl-2 protein in human cortex. Brain Res Dev Brain Res 119:225–230.PubMedGoogle Scholar
  82. Jensen FE (2002) The role of glutamate receptor maturation in perinatal seizures and brain injury. Int J Dev Neurosci 20:339–347.PubMedGoogle Scholar
  83. Jensen FE, Blume H, Alvarado S, Firkusny I, Geary C (1995) NBQX blocks acute and late epileptogenic effects of perinatal hypoxia. Epilepsia 36:966–972.PubMedGoogle Scholar
  84. Johnston MV (2001) Excitotoxicity in neonatal hypoxia. Ment Retard Dev Disabil Res Rev 7:229–234.PubMedGoogle Scholar
  85. Jones NM, Bergeron M (2001) Hypoxic preconditioning induces changes in HIF-1 target genes in neonatal rat brain. J Cereb Blood Flow Metab 21:1105–1114.PubMedGoogle Scholar
  86. Junk AK, Matnmis A, Savitz SI, Singh M, Roth S, Malhotra S, Rosenbaum PS, Cerami A, Brines M, Rosenbaum DM (2002) Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury. Proc Natl Acad Sci U S A 99:10659–10664.PubMedGoogle Scholar
  87. Juul S (2002) Erythropoietin in the central nervous system, and its use to prevent hypoxic-ischemic brain damage. Acta Paediatr Suppl 91:36–42.PubMedGoogle Scholar
  88. Juul SE, Yachnis AT, Christensen RD (1998a) Tissue distribution of erythropoietin and erythropoietin receptor in the developing human fetus. Early Hum Dev 52:235–249.PubMedGoogle Scholar
  89. Juul SE, Stallings SA, Christensen RD (1999a) Erythropoietin in the cerebrospinal fluid of neonates who sustained CNS injury. Pediatr Res 46:543–547.PubMedGoogle Scholar
  90. Juul SE, McPherson RJ, Kapur RP (2004a) Erythropoietin receptor function is not required for normal bowel development. Pediatr Res 55:522A.Google Scholar
  91. Juul SE, Harcum J, Li Y, Christensen RD (1997) Erythropoietin is present in the cerebrospinal fluid of neonates. J Pediatr 130:428–430.PubMedGoogle Scholar
  92. Juul SE, Anderson DK, Li Y, Christensen RD (1998b) Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatr Res 43:40–49.PubMedGoogle Scholar
  93. Juul SE, Joyce AE, Zhao Y, Ledbetter DJ (1999b) Why is erythropoietin present in human milk? Studies of erythropoietin receptors on enterocytes of human and rat neonates. Pediatr Res 46:263–268.PubMedGoogle Scholar
  94. Juul SE, Zhao Y, Dame JB, Du Y, Hutson AD, Christensen RD (2000) Origin and fate of erythropoietin in human milk. Pediatr Res 48:660–667.PubMedGoogle Scholar
  95. Juul SE, McPherson RJ, Farrell FX, Jolliffe L, Ness DJ, Gleason CA (2004b) Erythropoietin Concentrations in Cerebrospinal Fluid of Nonhuman Primates and Fetal Sheep following High-Dose Recombinant Erythropoietin. Biol Neonate 85:138–144.PubMedGoogle Scholar
  96. Juul SE, McPherson RJ, Farrell FX, Jolliffe L, Ness DJ, Gleason CA (2004c) Erytropoietin concentrations in cerebrospinal fluid of nonhuman primates and fetal sheep following high-dose recombinant erythropoietin. Biol Neonate 85:138–144.PubMedGoogle Scholar
  97. Juul SE, Ledbetter DJ, Joyce AE, Dame C, Christensen RD, Zhao Y, DeMarco V (2001) Erythropoietin acts as a trophic factor in neonatal rat intestine. Gut 49:182–189.PubMedGoogle Scholar
  98. Kadhim H, Tabarki B, De Prez C, Sebire G (2003) Cytokine immunoreactivity in cortical and subcortical neurons in periventricular leukomalacia: are cytokines implicated in neuronal dysfunction in cerebral palsy? Acta Neuropathol (Berl) 105:209–216.PubMedGoogle Scholar
  99. Kaptanoglu E, Solaroglu I, Okutan O, Surucu HS, Akbiyik F, Beskonakli E (2003) Erythropoietin exerts neuroprotection after acute spinal cord injury in rats: effect on lipid peroxidation and early ultrastructural findings. Neurosurg Rev.Google Scholar
  100. Kawakami M, Iwasaki S, Sato K, Takahashi M (2000) Erythropoietin inhibits calcium-induced neurotransmitter release from clonal neuronal cells. Biochem Biophys Res Commun 279:293–297.PubMedGoogle Scholar
  101. Kawakami M, Sekiguchi M, Sato K, Kozaki S, Takahashi M (2001) Erythropoietin receptor-mediated inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia. J Biol Chem 276:39469–39475.PubMedGoogle Scholar
  102. Kling PJ, Sullivan TM, Roberts RA, Philipps AF, Koldovsky O (1998) Human milk as a potential enteral source of erythropoietin. Pediatr Res 43:216–221.PubMedGoogle Scholar
  103. Knabe W, Knerlich F, Washausen S, Kietzmann T, Siren AL, Brunnett G, Kuhn HJ, Ehrenreich H (2004) Expression patterns of erythropoietin and its receptor in the developing midbrain. Anat Embryol (Berl) 207:503–512.PubMedGoogle Scholar
  104. Koshimura K, Murakami Y, Sohmiya M, Tanaka J, Kato Y (1999) Effects of erythropoietin on neuronal activity. J Neurochem 72:2565–2572.PubMedGoogle Scholar
  105. Kumral A, Ozer E, Yilmaz O, Akhisaroglu M, Gokmen N, Duman N, Ulukus C, Genc S, Ozkan H (2003a) Neuroprotective effect of erythropoietin on hypoxic-ischemic brain injury in neonatal rats. Biol Neonate 83:224–228.PubMedGoogle Scholar
  106. Kumral A, Baskin H, Duman N, Yilmaz O, Tatli M, Ozer E, Gokmen N, Genc S, Ozkan H (2003b) Erythropoietin protects against necrotizing enterocolitis of newborn rats by the inhibiting nitric oxide formation. Biol Neonate 84:325–329.PubMedGoogle Scholar
  107. Kumral A, Baskin H, Gokmen N, Yilmaz O, Genc K, Genc S, Tatli MM, Duman N, Ozer E, Ozkan H (2004a) Selective Inhibition of Nitric Oxide in Hypoxic-ischemic Brain Model in Newborn Rats: Is It an Explanation for the Protective Role of Erythropoietin? Biol Neonate 85:51–54.PubMedGoogle Scholar
  108. Kumral A, Uysal N, Tugyan K, Sonmez A, Yilmaz O, Gokmen N, Kiray M, Genc S, Duman N, Koroglu TF, Ozkan H, Gene K (2004b) Erythropoietin improves long-term spatial memory deficits and brain injury following neonatal hypoxia-ischemia in rats. Behav Brain Res 153:77–86.PubMedGoogle Scholar
  109. Ledbetter DJ, Juul SE (2000) Erythropoietin and the incidence of necrotizing enterocolitis in infants with very low birth weight. J Pediatr Surg 35:178–181.PubMedGoogle Scholar
  110. Leist M, Ghezzi P, Grasso G, Bianchi R, Villa P, Fratelli M, Savino C, Bianchi M, Nielsen J, Gerwien J, Kallunki P, Larsen AK, Helboe L, Christensen S, Pedersen LO, Nielsen M, Torup L, Sager T, Sfacteria A, Erbayraktar S, Erbayraktar Z, Gokmen N, Yilmaz O, Cerami-Hand C, Xie QW, Coleman T, Cerami A, Brines M (2004) Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305:239–242.PubMedGoogle Scholar
  111. Lewczuk P, Hasselblatt M, Kamrowski-Kruck H, Heyer A, Unzicker C, Siren AL, Ehrenreich H (2000) Survival of hippocampal neurons in culture upon hypoxia: effect of erythropoietin. Neuroreport 11:3485–3488.PubMedGoogle Scholar
  112. Lipton SA (2004) Erythropoietin for neurologic protection and diabetic neuropathy. N Engl J Med 350:2516–2517.PubMedGoogle Scholar
  113. Liu C, Shen K, Liu Z, Noguchi CT (1997) Regulated human erythropoietin receptor expression in mouse brain. J Biol Chem 272:32395–32400.PubMedGoogle Scholar
  114. Liu C, Yu K, Shen K, Liu Z, Noguchi CT (1996) Transgenic mice containing the human erythropoietin receptor gene exhibit correct hematopoietic and neural expression. Proc Assoc Am Physicians 108:449–454.PubMedGoogle Scholar
  115. Lou HC, Lassen NA, Friis-Hansen B (1979a) Impaired autoregulation of cerebral blood flow in the distressed newborn infant. J Pediatr 94:118–121.PubMedGoogle Scholar
  116. Lou HC, Skov H, Pedersen H (1979b) Low cerebral blood flow: a risk factor in the neonate. J Pediatr 95:606–609.PubMedGoogle Scholar
  117. Lou HC, Lassen NA, Tweed WA, Johnson G, Jones M, Palahniuk RJ (1979c) Pressure passive cerebral blood flow and breakdown of the blood-brain barrier in experimental fetal asphyxia. Acta Paediatr Scand 68:57–63.PubMedGoogle Scholar
  118. Marti HH, Bernaudin M, Petit E, Bauer C (2000) Neuroprotection and angiogenesis: dual role of erythropoietin in brain ischemia. News Physiol Sci 15:225–229.PubMedGoogle Scholar
  119. Marti HH, Gassmann M, Wenger RH, Kvietikova I, Morganti-Kossmann MC, Kossmann T, Trentz O, Bauer C (1997) Detection of erythropoietin in human liquor: intrinsic erythropoietin production in the brain. Kidney Int 51:416–418.PubMedGoogle Scholar
  120. Martinez-Estrada OM, Rodriguez-Millan E, Gonzalez-De Vicente E, Reina M, Vilaro S, Fabre M (2003) Erythropoietin protects the in vitro blood-brain barrier against VEGF-induced permeability. Eur J Neurosci 18:2538–2544.PubMedGoogle Scholar
  121. Masuda S, Chikuma M, Sasaki R (1997) Insulin-like growth factors and insulin stimulate erythropoietin production in primary cultured astrocytes. Brain Res 746:63–70.PubMedGoogle Scholar
  122. Masuda S, Okano M, Yamagishi K, Nagao M, Ueda M, Sasaki R (1994) A novel site of erythropoietin production. Oxygen-dependent production in cultured rat astrocytes. J Biol Chem 269:19488–19493.PubMedGoogle Scholar
  123. Masuda S, Nagao M, Takahata K, Konishi Y, Gallyas F, Jr., Tabira T, Sasaki R (1993) Functional erythropoietin receptor of the cells with neural characteristics. Comparison with receptor properties of erythroid cells. J Biol Chem 268:11208–11216.PubMedGoogle Scholar
  124. McDonald JW, Behrens MI, Chung C, Bhattacharyya T, Choi DW (1997) Susceptibility to apoptosis is enhanced in immature cortical neurons. Brain Res 759:228–232.PubMedGoogle Scholar
  125. McPherson RJ, Juul SE (2004) Treatment of Neonatal Rats with High Dose Erythropoietin (Epo) Produces Lasting Effects. Pediatric Research In Press.Google Scholar
  126. Ment LR, Schwartz M, Makuch RW, Stewart WB (1998) Association of chronic sublethal hypoxia with ventriculomegaly in the developing rat brain. Brain Res Dev Brain Res 111:197–203.PubMedGoogle Scholar
  127. Ment LR, Stewart WB, Duncan CC, Pitt BR, Cole JS (1986) Beagle puppy model of perinatal cerebral infarction. Regional cerebral prostaglandin changes during acute hypoxemia. J Neurosurg 65:851–855.PubMedGoogle Scholar
  128. Ment LR, Stewart WB, Fronc R, Seashore C, Mahooti S, Scaramuzzino D, Madri JA (1997) Vascular endothelial growth factor mediates reactive angiogenesis in the postnatal developing brain. Brain Res Dev Brain Res 100:52–61.PubMedGoogle Scholar
  129. Monyer H, Seeburg PH (1993) Constituents involved in glutamate receptor signaling. Hippocampus 3 Spec No:125–129.PubMedGoogle Scholar
  130. Mooney SM, Miller MW (2000) Expression of bcl-2, bax, and caspase-3 in the brain of the developing rat. Brain Res Dev Brain Res 123:103–117.PubMedGoogle Scholar
  131. Morishita E, Masuda S, Nagao M, Yasuda Y, Sasaki R (1997) Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 76:105–116.PubMedGoogle Scholar
  132. Morita M, Ohneda O, Yamashita T, Takahashi S, Suzuki N, Nakajima O, Kawauchi S, Ema M, Shibahara S, Udono T, Tomita K, Tamai M, Sogawa K, Yamamoto M, Fujii-Kuriyama Y (2003) HLF/HIF-2alpha is a key factor in retinopathy of prematurity in association with erythropoietin. Embo J 22:1134–1146.PubMedGoogle Scholar
  133. Moritz KM, Lim GB, Wintour EM (1997) Developmental regulation of erythropoietin and erythropoiesis. Am J Physiol 273:R1829–1844.PubMedGoogle Scholar
  134. Murakami F, Song WJ, Katsumaru H (1992) Plasticity of neuronal connections in developing brains of mammals. Neurosci Res 15:235–253.PubMedGoogle Scholar
  135. Myers RE (1975) Four patterns of perinatal brain damage and their conditions of occurrence in primates. Adv Neurol 10:223–234.PubMedGoogle Scholar
  136. Nagai A, Nakagawa E, Choi HB, Hatori K, Kobayashi S, Kim SU (2001) Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture. J Neuropathol Exp Neurol 60:386–392.PubMedGoogle Scholar
  137. Nakajima W, Ishida A, Lange MS, Gabrielson KL, Wilson MA, Martin LJ, Blue ME, Johnston MV (2000) Apoptosis has a prolonged role in the neurodegeneration after hypoxic ischemia in the newborn rat. J Neurosci 20:7994–8004.PubMedGoogle Scholar
  138. Nishida A, Misaki Y, Kuruta H, Takashima S (1994) Developmental expression of copper, zinc-superoxide dismutase in human brain by chemiluminescence. Brain Dev 16:40–43.PubMedGoogle Scholar
  139. Northington FJ, Ferriero DM, Martin LJ (2001a) Neurodegeneration in the thalamus following neonatal hypoxia-ischemia is programmed cell death. Dev Neurosci 23:186–191.PubMedGoogle Scholar
  140. Northington FJ, Ferriero DM, Flock DL, Martin LJ (2001b) Delayed neurodegeneration in neonatal rat thalamus after hypoxia-ischemia is apoptosis. J Neurosci 21:1931–1938.PubMedGoogle Scholar
  141. Northington FJ, Ferriero DM, Graham EM, Traystman RJ, Martin LJ (2001c) Early Neurodegeneration after Hypoxia-ischemia in Neonatal Rat Is Necrosis while Delayed Neuronal Death Is Apoptosis. Neurobiol Dis 8:207–219.PubMedGoogle Scholar
  142. Ogilvie M, Yu X, Nicolas-Metral V, Pulido SM, Liu C, Ruegg UT, Noguchi CT (2000) Erythropoietin stimulates proliferation and interferes with differentiation of myoblasts. J Biol Chem 275:39754–39761.PubMedGoogle Scholar
  143. Ohls RK (1999) Erythropoietin to prevent and treat the anemia of prematurity. Curr Opin Pediatr 11:108–114.PubMedGoogle Scholar
  144. Ohls RK (2002) Human recombinant erythropoietin in the prevention and treatment of anemia of prematurity. Paediatr Drugs 4:111–121.PubMedGoogle Scholar
  145. Okada A, Kinoshita Y, Maekawa T, Hassan MS, Kawanami C, Asahara M, Matsushima Y, Kishi K, Nakata H, Naribayashi Y, Chiba T (1996) Erythropoietin stimulates proliferation of rat-cultured gastric mucosal cells. Digestion 57:328–332.PubMedGoogle Scholar
  146. Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501.PubMedGoogle Scholar
  147. Palmer C, Menzies SL, Roberts RL, Pavlick G, Connor JR (1999) Changes in iron histochemistry after hypoxic-ischemic brain injury in the neonatal rat. J Neurosci Res 56:60–71.PubMedGoogle Scholar
  148. Pang Y, Cai Z, Rhodes PG (2000) Effects of lipopolysaccharide on oligodendrocyte progenitor cells are mediated by astrocytes and microglia. J Neurosci Res 62:510–520.PubMedGoogle Scholar
  149. Phelps DL (1995) Retinopathy of prematurity. Pediatr Rev 16:50–56.PubMedGoogle Scholar
  150. Powers WJ, Rosenbaum JL, Dence CS, Markham J, Videen TO (1998) Cerebral glucose transport and metabolism in preterm human infants. J Cereb Blood Flow Metab 18:632–638.PubMedGoogle Scholar
  151. Prass K, Scharff A, Ruscher K, Lowl D, Muselmann C, Victorov I, Kapinya K, Dirnagl U, Meisel A (2003) Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin. Stroke 34:1981–1986.PubMedGoogle Scholar
  152. Renzi MJ, Farrell FX, Bittner A, Galindo JE, Morton M, Trinh H, Jolliffe LK (2002) Erythropoietin induces changes in gene expression in PC-12 cells. Brain Res Mol Brain Res 104:86–95.PubMedGoogle Scholar
  153. Ribatti D, Presta M, Vacca A, Ria R, Giuliani R, Dell’Era P, Nico B, Roncali L, Dammacco F (1999) Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization In vivo. Blood 93:2627–2636.PubMedGoogle Scholar
  154. Rice JE, 3rd, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9:131–141.PubMedGoogle Scholar
  155. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674.PubMedGoogle Scholar
  156. Robertson S, Kennedy M, Keller G (1999) Hematopoietic commitment during embryogenesis. Ann N Y Acad Sci 872:9–15; discussion 15–16.PubMedGoogle Scholar
  157. Romijn HJ, Hofman MA, Gramsbergen A (1991) At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby? Early Hum Dev 26:61–67.PubMedGoogle Scholar
  158. Romsi P, Ronka E, Kiviluoma K, Vainionpaa V, Hirvonen J, Mennander A, Pokela M, Biancari F, Rimpilainen J, Juvonen T (2002) Potential neuroprotective benefits of erythropoietin during experimental hypothermic circulatory arrest. J Thorac Cardiovasc Surg 124:714–723.PubMedGoogle Scholar
  159. Rondi-Reig L, Lemaigre-Dubreuil Y, Montecot C, Muller D, Martinou JC, Caston J, Mariani J (2001) Transgenic mice with neuronal overexpression of bcl-2 gene present navigation disabilities in a water task. Neuroscience 104:207–215.PubMedGoogle Scholar
  160. Roth KA, D’Sa C (2001) Apoptosis and brain development. Ment Retard Dev Disabil Res Rev 7:261–266.PubMedGoogle Scholar
  161. Ruscher K, Freyer D, Karsch M, Isaev N, Megow D, Sawitzki B, Priller J, Dirnagl U, Meisel A (2002) Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model. J Neurosci 22:10291–10301.PubMedGoogle Scholar
  162. Sekiguchi Y, Kikuchi S, Myers RR, Marie Campana W (2003) ISSLS Prize Winner: Erythropoietin Inhibits Spinal Neuronal Apoptosis and Pain Following Nerve Root Crush. Spine 28:2577–2584.PubMedGoogle Scholar
  163. Sheldon RA, Almli L, Ferriero DM (2002) Copper/zinc superoxide dismutase transgenic brain in neonatal hypoxia-ischemia. Methods Enzymol 353:389–397.PubMedGoogle Scholar
  164. Shingo T, Sorokan ST, Shimazaki T, Weiss S (2001) Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci 21:9733–9743.PubMedGoogle Scholar
  165. Silva M, Benito A, Sanz C, Prosper F, Ekhterae D, Nunez G, Fernandez-Luna JL (1999) Erythropoietin can induce the expression of bcl-x(L) through Stat5 in erythropoietin-dependent progenitor cell lines. J Biol Chem 274:22165–22169.PubMedGoogle Scholar
  166. Sinor AD, Greenberg DA (2000) Erythropoietin protects cultured cortical neurons, but not astroglia, from hypoxia and AMPA toxicity. Neurosci Lett 290:213–215.PubMedGoogle Scholar
  167. Siren AL, Knerlich F, Poser W, Gleiter CH, Bruck W, Ehrenreich H (2001a) Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain. Acta Neuropathol (Berl) 101:271–276.PubMedGoogle Scholar
  168. Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, Keenan S, Gleiter C, Pasquali C, Capobianco A, Mennini T, Heumann R, Cerami A, Ehrenreich H, Ghezzi P (2001b) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A 98:4044–4049.PubMedGoogle Scholar
  169. Slater P, McConnell SE, D’Souza SW, Barson AJ (1993) Postnatal changes in N-methyl-D-aspartate receptor binding and stimulation by glutamate and glycine of [3H]-MK-801 binding in human temporal cortex. Br J Pharmacol 108:1143–1149.PubMedGoogle Scholar
  170. Solaroglu I, Solaroglu A, Kaptanoglu E, Dede S, Haberal A, Beskonakli E, Kilinc K (2003) Erythropoietin prevents ischemia-reperfusion from inducing oxidative damage in fetal rat brain. Childs Nerv Syst 19:19–22.PubMedGoogle Scholar
  171. Springborg JB, Ma X, Rochat P, Knudsen GM, Amtorp O, Paulson OB, Juhler M, Olsen NV (2002) A single subcutaneous bolus of erythropoietin normalizes cerebral blood flow autoregulation after subarachnoid haemorrhage in rats. Br J Pharmacol 135:823–829.PubMedGoogle Scholar
  172. Stave U (1965) Age-dependent changes of metabolism. II. Influences of hypoxia on tissue enzyme patterns of newborn and adult rabbits. Biol Neonat 8:114–130.PubMedGoogle Scholar
  173. Stewart WB, Ment LR, Schwartz M (1997) Chronic postnatal hypoxia increases the numbers of cortical neurons. Brain Res 760:17–21.PubMedGoogle Scholar
  174. Subramaniam S, McGonigle P (1994) Regional profile of developmental changes in the sensitivity of the N-methyl-D-aspartate receptor to polyamines. J Neurochem 62:1408–1415.PubMedGoogle Scholar
  175. Sugawa M, Sakurai Y, Ishikawa-Ieda Y, Suzuki H, Asou H (2002) Effects of erythropoietin on glial cell development; oligodendrocyte maturation and astrocyte proliferation. Neurosci Res 44:391–403.PubMedGoogle Scholar
  176. Tabira T, Konishi Y, Gallyas F, Jr. (1995) Neurotrophic effect of hematopoietic cytokines on cholinergic and other neurons in vitro. Int J Dev Neurosci 13:241–252.PubMedGoogle Scholar
  177. Teramo KA, Widness JA, Clemons GK, Voutilainen P, McKinlay S, Schwartz R (1987) Amniotic fluid erythropoietin correlates with umbilical plasma erythropoietin in normal and abnormal pregnancy. Obstet Gynecol 69:710–716.PubMedGoogle Scholar
  178. Tsuji M, Saul JP, du Plessis A, Eichenwald E, Sobh J, Crocker R, Volpe JJ (2000) Cerebral intravascular oxygenation correlates with mean arterial pressure in critically ill premature infants. Pediatrics 106:625–632.PubMedGoogle Scholar
  179. Vaccarino FM, Ment LR (2004) Injury and repair in developing brain. Arch Dis Child Fetal Neonatal Ed 89:F190–192.PubMedGoogle Scholar
  180. Vairano M, Dello Russo C, Pozzoli G, Battaglia A, Scambia G, Tringali G, Aloe-Spiriti MA, Preziosi P, Navarra P (2002) Erythropoietin exerts anti-apoptotic effects on rat microglial cells in vitro. Eur J Neurosci 16:584–592.PubMedGoogle Scholar
  181. Vallance P, Benjamin N, Collier J (1988) Erythropoietin, haemoglobin, and hypertensive crises. Lancet 1:1107.PubMedGoogle Scholar
  182. Vannucci RC (1990) Experimental biology of cerebral hypoxia-ischemia: relation to perinatal brain damage. Pediatr Res 27:317–326.PubMedGoogle Scholar
  183. Vannucci RC (1993) Experimental models of perinatal hypoxic-ischemic brain damage. APMIS Suppl 40:89–95.PubMedGoogle Scholar
  184. Vannucci RC, Perlman JM (1997) Interventions for perinatal hypoxic-ischemic encephalopathy. Pediatrics 100:1004–1014.PubMedGoogle Scholar
  185. Vannucci RC, Vannucci SJ (1997) A model of perinatal hypoxic-ischemic brain damage. Ann N Y Acad Sci 835:234–249.PubMedGoogle Scholar
  186. Villa P, Bigini P, Mennini T, Agnello D, Laragione T, Cagnotto A, Viviani B, Marinovich M, Cerami A, Coleman TR, Brines M, Ghezzi P (2003) Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med 198:971–975.PubMedGoogle Scholar
  187. Volpe JJ (2001a) Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 50:553–562.PubMedGoogle Scholar
  188. Volpe JJ (2001b) Perinatal brain injury: From pathogenesis to neuroprotection. Ment Retard Dev Disabil Res Rev 7:56–64.PubMedGoogle Scholar
  189. Volpe JJ (2001c) Neurology of the Newborn, 4th Edition: W.B. Saunders.Google Scholar
  190. Wang CH, Liang CL, Huang LT, Liu JK, Hung PH, Sun A, Hung KS (2004) Single intravenous injection of naked plasmid DNA encoding erythropoietin provides neuroprotection in hypoxia-ischemia rats. Biochem Biophys Res Commun 314:1064–1071.PubMedGoogle Scholar
  191. Wiessner C, Allegrini PR, Ekatodramis D, Jewell UR, Stallmach T, Gassmann M (2001) Increased cerebral infarct volumes in polyglobulic mice overexpressing erythropoietin. J Cereb Blood Flow Metab 21:857–864.PubMedGoogle Scholar
  192. Wolf RF, Gilmore LS, Friese P, Downs T, Burstein SA, Dale GL (1997a) Erythropoietin potentiates thrombus development in a canine arterio-venous shunt model. Throb Haemost 77:1020–1024.Google Scholar
  193. Wolf RF, Peng J, Friese P, Gilmore LS, Burstein SA, Dale GL (1997b) Erythropoietin administration increases production and reactivity of platelets in dogs. Thromb Haemost 78:1505–1509.PubMedGoogle Scholar
  194. Wong KC, Li PK, Lui SF, Nicholls MG, Lai KN (1990) The adverse effects of recombinant human erythropoietin therapy. Adverse Drug React Acute Poisoning Rev 9:183–206.PubMedGoogle Scholar
  195. Wrighton NC, Farrell FX, Chang R, Kashyap AK, Barbone FP, Mulcahy LS, Johnson DL, Barrett RW, Jolliffe LK, Dower WJ (1996) Small peptides as potent mimetics of the protein hormone erythropoietin. Science 273:458–464.PubMedGoogle Scholar
  196. Wu H, Liu X, Jaenisch R, Lodish HF (1995) Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83:59–67.PubMedGoogle Scholar
  197. Wu H, Lee SH, Gao J, Liu X, Iruela-Arispe ML (1999) Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 126:3597–3605.PubMedGoogle Scholar
  198. Yan XX, Najbauer J, Woo CC, Dashtipour K, Ribak CE, Leon M (2001) Expression of active caspase-3 in mitotic and postmitotic cells of the rat forebrain. J Comp Neurol 433:4–22.PubMedGoogle Scholar
  199. Yasuda Y, Nagao M, Okano M, Masuda S, Sasaki R, Konishi H, al e (1993) Localization of erythropoietin and erythropoietin-receptor in postimplantation mouse embryos. Development, Growth and Differentiation 35:711–722.Google Scholar
  200. Yonezawa M, Back SA, Gan X, Rosenberg PA, Volpe JJ (1996) Cystine deprivation induces oligodendroglial death: rescue by free radical scavengers and by a diffusible glial factor. J Neurochem 67:566–573.PubMedGoogle Scholar
  201. Yoon BH, Romero R, Kim CJ, Koo JN, Choe G, Syn HC, Chi JG (1997) High expression of tumor necrosis factor-alpha and interleukin-6 in periventricular leukomalacia. Am J Obstet Gynecol 177:406–411.PubMedGoogle Scholar
  202. Yu X, Lin CS, Costantini F, Noguchi CT (2001) The human erythropoietin receptor gene rescues erythropoiesis and developmental defects in the erythropoietin receptor null mouse. Blood 98:475–477.PubMedGoogle Scholar
  203. Yu X, Shacka JJ, Eells JB, Suarez-Quian C, Przygodzki RM, Beleslin-Cokic B, Lin CS, Nikodem VM, Hempstead B, Flanders KC, Costantini F, Noguchi CT (2002) Erythropoietin receptor signalling is required for normal brain development. Development 129:505–516.PubMedGoogle Scholar
  204. Zipursky A (2002) The risk of hematopoietic growth factor therapy in newborn infants. Pediatr Res 51:549.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Eric J. Demers
    • 1
  • Sandra E. Juul
    • 1
  1. 1.Department of PediatricsUniversity of WashingtonSeattle

Personalised recommendations