Skip to main content

Use of a Network-Enabled Server System for a Sparse Linear Algebra Grid Application

  • Chapter
  • 247 Accesses

Abstract

Solving systems of linear equations is one of the key operations in linear algebra. Many different algorithms are available in that purpose. These algorithms require a very accurate tuning to minimise runtime and memory consumption. The TLSE project provides, on one hand, a scenario-driven expert site to help users choose the right algorithm according to their problem and tune accurately this algorithm, and, on the other hand, a test-bed for experts in order to compare algorithms and define scenarios for the expert site. Both features require to run the available solvers a large number of times with many different values for the control parameters (and maybe with many different architectures). Currently, only the grid can provide enough computing power for this kind of application. The DIET middleware is the GRID backbone for TLSE. It manages the solver services and their scheduling in a scalable way.

This work was supported in part by the ACI GRID (ASP and TLSE) and the RNTL (GASP) of the French National Fund for Science.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Amestoy and M. Pantel. Grid-TLSE:A web expertise site for sparse linear algebra. In Sparse Days and Grid Computing in St Girons, June 2003. http://www.cerfacs.fr/algor/PastWorkshops/SparseDays2003.

    Google Scholar 

  2. P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering algorithm. SIAM Journal on Matrix Analysis and Applications, 17:886–905, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng., 184:501–520, 2000.

    Article  MATH  Google Scholar 

  4. G. Antoniu, L. Bougé, and M. Jan. JuxMem: An adaptive supportive platform for data sharing on the grid. In Proceedings Workshop on Adaptive Grid Middleware (AGRIDM 2003), pages 49–59, 2003.

    Google Scholar 

  5. P. Arbenz, W. Gander, and J. Mori. The Remote Computational System. Parallel Computing, 23(10):1421–1428, 1997.

    Article  MATH  Google Scholar 

  6. D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Sagi, Z. Shi, and S. Vadhiyar. Users’ Guide to NetSolve V1.4. Computer Science Dept. Technical Report CS-01-467, University of Tennessee, Knoxville, TN, July 2001.

    Google Scholar 

  7. D.C. Arnold, H. Casanova, and J. Dongarra. Innovations of the NetSolve Grid Computing System. Concurrency And Computation: Practice And Experience, 14:1–23, 2002.

    Article  Google Scholar 

  8. E. Caron, P.K. Chouhan, and A. Legrand. Automatic Deployment for Hierarchical Network Enabled Server. In The 13th Heterogeneous Computing Workshop, 2004.

    Google Scholar 

  9. E. Caron and F. Desprez. DIET: A Scalable Toolbox to Build Network Enabled Servers on the Grid. Technical Report 2005-23, LIP ENS Lyon, 2005.

    Google Scholar 

  10. E. Caron, F. Desprez, F. Lombard, J.-M. Nicod, M. Quinson, and F. Suter. A Scalable Approach to Network Enabled Servers. In Proc. of EuroPar 2002, 2002.

    Google Scholar 

  11. E. Cuthill. Several strategies for reducing the bandwidth of matrices. In D. J. Rose and R. A. Willoughby, editors, Sparse Matrices and Their Applications, New York, 1972. Plenum Press.

    Google Scholar 

  12. T. A. Davis and I. S. Duff. A combined unifrontal/multifrontal method for unsymmetric sparse matrices. ACM Trans. on Mathematical Soft., 25(1): 1–19, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  13. T.A. Davis. Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw., 30(2): 196–199, 2004.

    Article  MATH  Google Scholar 

  14. M. Daydé, L. Giraud, M. Hernandez, J.-Y. L’Excellent, M. Pantel, and C. Puglisi. An overview of the Grid-TLSE project. In Proceedings of 6th International Meeting VEC-PAR’04, Valencia, Spain, pages pp 851–856, June 2004.

    Google Scholar 

  15. B. Del Fabbro, D. Laiymani, J.-M. Nicod, and L. Philippe. Data management in grid applications providers. In IEEE Int. Conf. DFMA’05, February 2005.

    Google Scholar 

  16. F. Desprez, M. Quinson, and F. Suter. Dynamic Performance Forecasting for Network Enabled Servers in a Metacomputing Environment. In Procs of the Int. Conf. on Parallel and Distributed Processing Techniques and Applications, 2001.

    Google Scholar 

  17. M.C. Ferris, M.P. Mesnier, and J.J. Mori. NEOS and Condor: Solving Optimization Problems Over the Internet. ACM Trans. on Mathematical Sofware, 26(1):1–18, 2000.

    Article  Google Scholar 

  18. P. Hénon, P. Ramet, and J. Roman. PaStiX: A High-Performance Parallel Direct Solver for Sparse Symmetric Definite Systems. Parallel Computing, 28(2):301–321, January 2002.

    Article  MATH  MathSciNet  Google Scholar 

  19. HSL. A collection of Fortran codes for large scale scientific computation, 2000.

    Google Scholar 

  20. G. Karypis and V. Kumar. METIS — A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices — Version 4.0. University of Minnesota, September 1998.

    Google Scholar 

  21. X. S. Li and J. W. Demmel. SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems. ACM Trans. on Mathematical Soft., 29(2), 2003.

    Google Scholar 

  22. J. W. H. Liu. Modification of the minimum degree algorithm by multiple elimination. ACM Trans. on Mathematical Soft., 11(2): 141–153, 1985.

    Article  MATH  Google Scholar 

  23. H. Nakada, M. Sato, and S. Sekiguchi. Design and Implementations of Ninf: towards a Global Computing Infrastructure. Future Generation Computing Systems, Metacomputing Issue, 15(5–6):649–658, 1999. http://ninf.apgrid.org/papers/papers.shtml.

    Article  Google Scholar 

  24. M. Pantel, C. Puglisi, and P. Amestoy. Test for large scale systems of equations: meta-data for solvers, matrices and computers. In PMAA’04, 2004.

    Google Scholar 

  25. M. Pantel, C. Puglisi, and P. Amestoy. Grid, components and scientific computing. Technical Report TR/TLSE/05/07, ENSEEIHT-1RIT, 2005.

    Google Scholar 

  26. M. Quinson. Dynamic Performance Forecasting for Network-Enabled Servers in a Meta-computing Environment. In Int. Workshop on Performance Modeling, Evaluation, and Opt. of Parallel and Dist. Syst. (PMEO-PDS’02), in conjunction with IPDPS’ 02, 2002.

    Google Scholar 

  27. K. Seymour, C. Lee, F. Desprez, H. Nakada, and Y. Tanaka. The End-User and Middleware APIs for GridRPC. In Workshop on Grid Application Programming Interfaces, In conjunction with GGF12, Brussels, Belgium, September 2004.

    Google Scholar 

  28. S. Shirasuna, H. Nakada, S. Matsuoka, and S. Sekiguchi. Evaluating Web Services Based Implementations of GridRPC. In Proceedings of the 11th IEEE International Symposium on High Performance Distributed Computing (HPDC-11 2002), pages 237–245, 2002.

    Google Scholar 

  29. R. Wolski, N. T. Spring, and J. Hayes. The Network Weather Service: A Distributed Resource Performance Forecasting Service for Metacomputing. Future Generation Computing Systems, Metacomputing Issue, 15(5–6):757–768, Oct. 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Caron, E., Desprez, F., L’Excellent, JY., Hamerling, C., Pantel, M., Puglisi-Amestoy, C. (2006). Use of a Network-Enabled Server System for a Sparse Linear Algebra Grid Application. In: Getov, V., Laforenza, D., Reinefeld, A. (eds) Future Generation Grids. Springer, Boston, MA . https://doi.org/10.1007/978-0-387-29445-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-29445-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-27935-0

  • Online ISBN: 978-0-387-29445-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics