Skip to main content

II–VI Narrow-Bandgap Semiconductors for Optoelectronics

  • Reference work entry
Springer Handbook of Electronic and Photonic Materials

Part of the book series: Springer Handbooks ((SHB))

Abstract

The field of narrow-gap II–VI materials is dominated by the compound semiconductor mercury cadmium telluride, (Hg1–x Cd x Te or MCT), which supports a large industry in infrared detectors, cameras and infrared systems. It is probably true to say that HgCdTe is the third most studied semiconductor after silicon and gallium arsenide. Hg1–x Cd x Te is the material most widely used in high-performance infrared detectors at present. By changing the composition x the spectral response of the detector can be made to cover the range from 1 μm to beyond 17 μm. The advantages of this system arise from a number of features, notably: close lattice matching, high optical absorption coefficient, low carrier generation rate, high electron mobility and readily available doping techniques. These advantages mean that very sensitive infrared detectors can be produced at relatively high operating temperatures. Hg1–x Cd x Te multilayers can be readily grown in vapor-phase epitaxial processes. This provides the device engineer with complex doping and composition profiles that can be used to further enhance the electro-optic performance, leading to low-cost, large-area detectors in the future. The main purpose of this chapter is to describe the applications, device physics and technology of II–VI narrow-bandgap devices, focusing on HgCdTe but also including Hg1–x Mn x Te and Hg1–x Zn x Te. It concludes with a review of the research and development programs into third-generation infrared detector technology (so-called GEN III detectors) being performed in centers around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCD:

charge-coupled device

CMOS:

complementary metal-oxide-semiconductor

DLHJ:

double-layer heterojunction

EPD:

etch pit density

FPA:

focal plane arrays

IMP:

interdiffused multilayer process

IR:

infrared

LED:

light-emitting diodes

LPE:

liquid phase epitaxy

MBE:

molecular beam epitaxy

MOS:

metal/oxide/semiconductor

MOSFET:

metal/oxide/semiconductor field effect transistor

MOVPE:

metalorganic vapor phase epitaxy

MQW:

multiple quantum well

MTF:

modulation transfer function

NMOS:

n-type-channel metal–oxide–semiconductor

PC:

photoconductive

PV:

photovoltaic

SIMS:

secondary ion mass spectrometry

THM:

traveling heater method

VPE:

vapor phase epitaxy

References

  1. W. D. Lawson, S. Nielsen, E. H. Putley, Y. S. Young: J. Phys. Chem. Solids 9, 325–329 (1959)

    CAS  Google Scholar 

  2. M. A. Kinch: Mater. Res. Soc. Symp. Proc. 90, 15 (1987)

    CAS  Google Scholar 

  3. N. Duy, D. Lorans: Semicond. Sci. Technol. 6(12), C93 (1991)

    Google Scholar 

  4. S. Oguz, R. J. Olson, D. L. Lee et al.: Proc. SPIE 1307, 560 (1990)

    CAS  Google Scholar 

  5. T. Tanaka, K. Ozaki, K. Yamamoto et al.: J. Cryst. Growth 117, 24 (1992)

    CAS  Google Scholar 

  6. M. A. Kinch, S. R. Borello: Infrared Phys. 15, 111 (1975)

    CAS  Google Scholar 

  7. C. T. Elliott: Handbook on Semiconductors, 1st edn., ed. by C. Hilsum (North-Holland, Amsterdam 1981) p. 727

    Google Scholar 

  8. C. T. Elliott, N. T. Gordon: Handbook on Semiconductors, 2nd edn., ed. by C. Hilsum (North-Holland, Amsterdam 1993) p. 841

    Google Scholar 

  9. A. Kolodny, I. Kidron: Infrared Phys. 22, 9 (1992)

    Google Scholar 

  10. N. Oda: Proc. SPIE 915, 20 (1988)

    CAS  Google Scholar 

  11. M. A. Kinch, S. R. Borello, A. Simmons: Infrared Phys. 17, 127 (1977)

    Google Scholar 

  12. D. L. Smith: J. Appl. Phys. 54, 5441 (1983)

    CAS  Google Scholar 

  13. T. Ashley, C. T. Elliott: Infrared Phys. 22, 367 (1982)

    CAS  Google Scholar 

  14. D. L. Smith, D. K. Arch, R. A. Wood, M. W. Scott: Appl. Phys. Lett. 45(1), 83 (1984)

    Google Scholar 

  15. C. A. Musca, J. F. Siliquini, B. D. Nener, L. Faraone: IEEE Trans. Electron. Dev. 44(2), 239 (1997)

    Google Scholar 

  16. R. Kumar, S. Gupta, V. Gopal, K. C. Chabra: Infrared Phys. 31(1), 101 (1991)

    Google Scholar 

  17. M. A. Kinch, S. R. Borello, B. H. Breazale, A. Simmons: Infrared Phys. 16, 137 (1977)

    Google Scholar 

  18. M. B. Reine, E. E. Krueger, P. OʼDette et al.: Proc. SPIE 2816, 120 (1996)

    CAS  Google Scholar 

  19. I. M. Baker, F. A. Capocci, D. E. Charlton, J. T. M. Wotherspoon: Solid-State Electron. 21, 1475 (1978)

    CAS  Google Scholar 

  20. C. T. Elliott: Electron. Lett. 17, 312 (1981)

    CAS  Google Scholar 

  21. C. T. Elliott, N. T. Gordon, R. S. Hall, G. J. Crimes: J. Vac. Sci. Technol. A 8, 1251 (1990)

    CAS  Google Scholar 

  22. C. T. Elliott: UK Patent 1488, p. 258 (1977)

    Google Scholar 

  23. C. T. Elliott, D. Day, D. J. Wilson: Infrared Phys. 22, 31 (1982)

    CAS  Google Scholar 

  24. C. T. Elliott, C. L. Jones: Narrow-Gap II–VI Compounds for Optoelectronic and Electromagnetic Applications (Chapman Hall, New York 1997) Chap. 16

    Google Scholar 

  25. A. Blackburn, M. V. Blackman et al.: Infrared Phys. 22, 57 (1982)

    CAS  Google Scholar 

  26. D. J. Day, T. J. Shepherd: Solid-State Electron. 25(6), 707 (1982)

    Google Scholar 

  27. T. J. Shepherd, D. J. Day: Solid-State Electron. 25(6), 713 (1982)

    Google Scholar 

  28. T. Ashley, C. T. Elliott, A. M. White et al.: Infrared Phys. 24(1), 25 (1984)

    Google Scholar 

  29. C. T. Elliott: Proc. SPIE 1038, 2 (1989)

    CAS  Google Scholar 

  30. A. Campbell, C. T. Elliott, A. M. White: Infrared Phys. 27(2), 125 (1987)

    Google Scholar 

  31. A. Sher, A. B. Chen, W. E. Spicer, C. K. Shih: J. Vac. Sci. Technol. A 3, 105 (1985)

    CAS  Google Scholar 

  32. A. Rogalski: Infrared Detectors and Emitters: Materials and Devices, Electron. Mater. Vol. 8 (Kluwer Academic, Dordrecht 2001) Chap. 12

    Google Scholar 

  33. E. J. Smith, T. Tung, S. Sen et al.: J. Vac. Sci. Technol. A 5, 3043 (1987)

    CAS  Google Scholar 

  34. J. Piotrowski, T. Niedziela: Infrared Phys. 30, 113 (1990)

    CAS  Google Scholar 

  35. E. A. Patten, M. H. Kalisher, G. R. Chapman et al.: J. Vac. Sci. Technol. B 9, 1746 (1991)

    CAS  Google Scholar 

  36. J. Ameurlaine, A. Rousseau, T. Nguyen-Duy, R. Triboulet: Proc. SPIE 929, 14 (1988)

    CAS  Google Scholar 

  37. D. L. Kaiser, P. Becla: Mater. Res. Soc. Symp. Proc. 90, 397 (1987)

    CAS  Google Scholar 

  38. P. Becla: J. Vac. Sci. Technol. A 4, 2014 (1986)

    CAS  Google Scholar 

  39. R. M. Broudy, V. J. Mazurczyk: Semicond. Semimet., 18 (1991)

    Google Scholar 

  40. M. B. Reine: Proc. SPIE 443, 2 (1983)

    CAS  Google Scholar 

  41. M. B. Reine, K. R. Maschoff, S. B. Tobin et al.: Semicond. Sci. Technol. 8, 788 (1993)

    CAS  Google Scholar 

  42. L. J. Kozlowski: Proc. SPIE 2745, 2 (1996)

    Google Scholar 

  43. L. J. Kozlowski, J. Montroy, K. Vural, W. E. Kleinhans: Proc. SPIE 3436, 162 (1998)

    CAS  Google Scholar 

  44. M. B. Reine, A. K. Sood, T. J. Tredwell et al.: Semiconductors and Semimetals, Vol. 18, ed. by R. K. Willardson, A. C. Beer (Academic, New York 1981) Chap. 6

    Google Scholar 

  45. M. B. Reine: Infrared Detectors and Emitters: Materials and Devices, Electron. Mater. Vol. 8 (Kluwer Academic, Dordrecht 2001) Chap. 12, p. 8

    Google Scholar 

  46. D. E. Lacklison, P. Capper et al.: Semicond. Sci. Technol. 2, 33 (1987)

    CAS  Google Scholar 

  47. P. L. Polla, R. L. Aggarwal, D. A. Nelson et al.: Appl. Phys. Lett. 43, 941 (1983)

    CAS  Google Scholar 

  48. O. K. Wu, G. S. Kamath, W. A. Radford et al.: J. Vac. Sci. Technol. A 8(2), 1034 (1990)

    CAS  Google Scholar 

  49. O. P. Agnihotri, C. A. Musca, L. Faraone: Semicond. Sci. Technol. 13, 839–845 (1998)

    CAS  Google Scholar 

  50. W. W. Anderson: Infrared Phys. 20, 353 (1980)

    CAS  Google Scholar 

  51. J. Y. Wong: IEEE Trans. Electron. Dev. 27, 48 (1980)

    Google Scholar 

  52. W. W. Anderson, K. J. Hoffman: J. Appl. Phys. 53, 9130 (1982)

    CAS  Google Scholar 

  53. C. T. Sah: Phys. Rev. 123, 1594 (1961)

    CAS  Google Scholar 

  54. R. E. DeWames, J. G. Pasko, E. S. Yao, A. H. B. Vanderwyck, G. M. Williams: J. Vac. Sci. Technol. A6, 2655 (1988)

    Google Scholar 

  55. Y. Nemirovski, D. Rosenfeld, R. Adar, A. Kornfeld: J. Vac. Sci. Technol. A7, 528 (1989)

    Google Scholar 

  56. D. Rosenfeld, G. Bahir: IEEE Trans. Electron. Dev. 39, 1638–45 (1992)

    CAS  Google Scholar 

  57. Y. Nemirovsky, R. Fastow, M. Meyassed, A. Unikovsky: J. Vac. Sci. Technol. B9(3), 1829 (1991)

    Google Scholar 

  58. I. M. Baker, C. D. Maxey: J. Electron. Mater. 30(6), 682 (2003)

    Google Scholar 

  59. I. M. Baker, G. J. Crimes, C. K. Ard et al.: IEE Conf. Pub. 321, 78 (1990)

    CAS  Google Scholar 

  60. Y. Nemirovsky, A. Unikovsky: J. Vac. Sci. Technol. B10, 1602 (1992)

    Google Scholar 

  61. J. H. Tregilgas: J. Vac. Sci. Technol. 21, 208 (1982)

    CAS  Google Scholar 

  62. J. P. Hirth, H. Ehrenreich: J. Vac. Sci. Technol. A3, 367 (1985)

    Google Scholar 

  63. A. Szilagyi, M. N. Grimbergen: J. Cryst. Growth 86, 912 (1988)

    CAS  Google Scholar 

  64. A. J. Syllaios, L. Colombo: Proc. IEDM Conf. (IEEE, New York 1982) p. p137

    Google Scholar 

  65. B. Pelliciari, G. Baret: J. Appl. Phys. 62, 3986 (1987)

    CAS  Google Scholar 

  66. S. M. Johnson, D. R. Rhiger, J. P. Rosberg et al.: J. Vac. Sci. Technol. B10, 1499 (1992)

    Google Scholar 

  67. P. W. Norton, A. P. Erwin: J. Vac. Sci. Technol. A7, 503 (1989)

    Google Scholar 

  68. P. S. Wijewarnasuriya, M. Zandian, D. B. Young et al.: J. Electron. Mater. 28, 649–53 (1999)

    CAS  Google Scholar 

  69. I. M. Baker, G. J. Crimes, J. E. Parsons, E. S. OʼKeefe: Proc. SPIE 2269, 636 (1994)

    CAS  Google Scholar 

  70. S. M. Johnson, J. A. Vigil, J. B. James et al.: J. Electron. Mater. 22, 835 (1993)

    CAS  Google Scholar 

  71. S. J. C. Irvine: Narrow-gap II–IV Compounds for Optoelectronic and Electromagnetic Applications (Chapman and Hall, New York 1997) Chap. 3

    Google Scholar 

  72. J. Tunnicliffe, J. Irvine, S. Dosser, J. Mullin: J. Cryst. Growth 68, 245 (1984)

    CAS  Google Scholar 

  73. C. D. Maxey, J. P. Camplin, I. T. Guilfoy et al.: J. Electron. Mater. 32(7), p656 (2003)

    CAS  Google Scholar 

  74. O. K. Wu, T. J. deLyon, R. D. Rajavel, J. E. Jensen: Narrow-Gap II-IV Compounds for Optoelectronic and Electromagnetic Applications, Part 1 (Chapman and Hall, New York 1997) Chap. 4

    Google Scholar 

  75. M. V. Blackman et al.: Elec. Lett. 23, 978 (1987)

    Google Scholar 

  76. S. Margalit, Y. Nemirovsky, I. Rotstein: J. Appl. Phys. 50, 6386 (1979)

    CAS  Google Scholar 

  77. A. Kolodny, I. Kidron: IEEE Trans. Electron. Dev. ED-27, 37 (1980)

    CAS  Google Scholar 

  78. L. O. Bubulac, W. E. Tennant, R. A. Riedel et al.: J. Vac. Sci. Technol. 21, 251 (1982)

    CAS  Google Scholar 

  79. L. O. Bubulac, W. E. Tennant et al.: Appl. Phys. Lett. 51, 355 (1987)

    CAS  Google Scholar 

  80. J. Syz, J. D. Beck, T. W. Orient, H. F. Schaake: J. Vac. Sci. Technol. A7, 396 (1989)

    Google Scholar 

  81. M. A. Kinch: Proc. SPIE 4369, 566 (2001)

    Google Scholar 

  82. J. White et al.: J. Electron. Mater. 30(6), 762 (2001)

    CAS  Google Scholar 

  83. L. O. Bubulac, C. R. Viswanathan et al.: J. Cryst. Growth 123, 555 (1992)

    CAS  Google Scholar 

  84. I. M. Baker, R. A. Ballingall: Proc. SPIE. 510, 210 (1985)

    Google Scholar 

  85. P. Tribulet, J-P. Chatard, P. Costa, S. Paltrier: J. Electron. Mater. 30(6), 574 (2001)

    Google Scholar 

  86. T. Tung, M. H. Kalisher, M. H. Stevens et al.: Mater. Res. Soc. Symp. Proc. 90, 321 (1987)

    CAS  Google Scholar 

  87. C. C. Wang: J. Vac. Sci. Technol. B9, 740 (1991)

    Google Scholar 

  88. G. N. Pulz, P. W. Norton, E. E. Krueger, M. B. Reine: J. Vac. Sci. Technol. B9, 1724 (1991)

    Google Scholar 

  89. P. W. Norton, P. LoVecchio, G. N. Pultz et al.: Proc. SPIE 2228, 73 (1994)

    CAS  Google Scholar 

  90. T. Tung: J. Cryst. Growth 86, 161 (1988)

    CAS  Google Scholar 

  91. J. Arias, M. Zandian, J. G. Pasko et al.: J. Appl. Phys. 69, 2143 (1991)

    CAS  Google Scholar 

  92. J. M. Arias, J. G. Pasko, M. Zandian et al.: Appl. Phys. Letts. 62, 976 (1993)

    CAS  Google Scholar 

  93. J. Bajaj: Proc. SPIE 3948, 42 (2000)

    CAS  Google Scholar 

  94. K. W. Hodapp, J. K. Hora, D. N. B. Hall et al.: New Astronomy 1, 177 (1996)

    Google Scholar 

  95. C. D. Maxey, C. J. Jones, N. Metcalf et al.: Proc. SPIE 3122, 453 (1996)

    Google Scholar 

  96. J. B. Varesi, R. E. Bornfreund, A. C. Childs et al.: J. Electron. Mater. 30(6), 56698 (2001)

    Google Scholar 

  97. D. J. Hall, L. Buckle, N. T. Gordon et al.: Proc. SPIE 5406, 317 (2004)

    Google Scholar 

  98. G. Bostrup, K. L. Hess, J. Ellsworth, D. Cooper, R. Haines: J. Electron. Mater. 30(6), 560 (2001)

    CAS  Google Scholar 

  99. K. Vural, L. J. Kozlowski, D. E. Cooper et al.: Proc. SPIE 3698, 24 (1999)

    CAS  Google Scholar 

  100. N. T. Gordon, I. M. Baker: Infrared Detectors and Emitters: Materials and Devices, Electron. Mater. Vol. 8 (Kluwer Academic, Dordrecht 2001) Chap. 2, p. 23

    Google Scholar 

  101. J. D. Beck, C.-F. Wan, M. A. Kinch, J. E. Robinson: Proc. SPIE 4454, 188 (2001)

    CAS  Google Scholar 

  102. M. A. Kinch, J. D. Beck, C.-F. Wan et al.: J. Electron. Mater. 33(6), 630 (2003)

    Google Scholar 

  103. T. J. de Lyon, J. E. Jenson, M. D. Gordwitz et al.: J. Electron. Mater. 28, 705 (1999)

    Google Scholar 

  104. I. M. Baker, S. S. Duncan, J. W. Copley: Proc. SPIE 5406, 133 (2004)

    Google Scholar 

  105. M. B. Reine, A. Hairston, P. OʼDette et al.: Proc. SPIE 3379, 200 (1998)

    CAS  Google Scholar 

  106. W. E. Tennant, M. Thomas, L. J. Kozlowski et al.: J. Electron. Mater. 30(6), 590 (2001)

    CAS  Google Scholar 

  107. W. Cabanski, R. Brieter, R. Koch et al.: Proc. SPIE 4369, 547 (2001)

    Google Scholar 

  108. J. M. Arias, M. Zandian, G. M. Williams: J. Appl. Phys. 70(8), 4620 (1991)

    CAS  Google Scholar 

  109. R. D. Rajavel, D. M. Jamba, O. K. Wu et al.: J. Electron. Mater. 26, 476 (1997)

    CAS  Google Scholar 

  110. R. D. Rajavel, D. M. Jamba, O. K. Wu et al.: J. Electron. Mater. 27, 747 (1998)

    CAS  Google Scholar 

  111. C. T. Elliott, N. T. Gordon, A. M. White: Appl. Phys. Lett. 74, 2881 (1999)

    CAS  Google Scholar 

  112. C. T. Elliott: Infrared Detectors and Emitters: Materials and Devices, Electron. Mater. Vol. 8 (Kluwer Academic, Dordrecht 2001) Chap. 11

    Google Scholar 

  113. N. T. Gordon, C. L. Jones, D. J. Lees et al.: Proc. SPIE 5406, 145 (2004)

    Google Scholar 

  114. C. T. Elliott, T. Ashley: Electron. Lett. 21, 451 (1985)

    Google Scholar 

  115. D. Marr: Vision (W. H. Freeman, San Francisco 1982)

    Google Scholar 

  116. M. Masie, P. McCarley, J. P. Curzan: Proc. SPIE 1961, 17 (1993)

    Google Scholar 

  117. P. McCarley: Proc. SPIE 3698, 716 (1999)

    CAS  Google Scholar 

  118. C. R. Baxter, M. A. Massie, P. L. McCarley, M. E. Couture: Proc. SPIE 4369, 129 (2001)

    Google Scholar 

  119. N. T. Gordon: Narrow-Gap II-IV Compounds for Optoelectronic and Electromagnetic Applications (Chapman and Hall, New York 1997) Chap. 17

    Google Scholar 

  120. P. Bouchut, G. Destefanis, J. P. Chamonal et al.: J. Vac. Sci. Technol. B 9, 1794 (1991)

    CAS  Google Scholar 

  121. T. Ashley, C. T. Elliott, N. T. Gordon et al.: Infrared Phys. Technol. 36, 1037 (1995)

    CAS  Google Scholar 

  122. R. Zucca, J. Bajaj, E. R. Blazewski: J. Vac. Sci. Technol. A 6, 2725 (1988)

    Google Scholar 

  123. J. R. Meyer, I. Vurgaftman: Infrared Detectors and Emitters: Materials and Devices, Electron. Mater. Vol. 8 (Kluwer Academic, Dordrecht 2001) Chap. 14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Baker Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Baker, I. (2006). II–VI Narrow-Bandgap Semiconductors for Optoelectronics. In: Kasap, S., Capper, P. (eds) Springer Handbook of Electronic and Photonic Materials. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-29185-7_36

Download citation

Publish with us

Policies and ethics