Skip to main content

Epitaxial Crystal Growth: Methods and Materials

  • Reference work entry
Springer Handbook of Electronic and Photonic Materials

Part of the book series: Springer Handbooks ((SHB))

Abstract

The epitaxial growth of thin films of material for a wide range of applications in electronics and optoelectronics is a critical activity in many industries. The original growth technique used, in most instances, was liquid-phase epitaxy (LPE), as this was the simplest and often the cheapest route to producing device-quality layers. These days, while some production processes are still based on LPE, most research into and (increasingly) much of the production of electronic and optoelectronic devices now centers on metalorganic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE). These techniques are more versatile than LPE (although the equipment is more expensive), and they can readily produce multilayer structures with atomic-layer control, which has become more and more important in the type of nanoscale engineering used to produce device structures in as-grown multilayers. This chapter covers these three basic techniques, including some of their more common variants, and outlines the relative advantages and disadvantages of each. Some examples of growth in various important systems are also outlined for each of the three techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2DEG:

two-dimensional electron gas

AFM:

atomic force microscopy

ALD:

atomic-layer deposition

ALE:

atomic-layer epitaxy

CBE:

chemical beam epitaxy

CFLPE:

container-free liquid phase epitaxy

CVD:

chemical vapor deposition

DIPTe:

diisopropyltellurium

DLHJ:

double-layer heterojunction

DMCd:

dimethyl cadmium

DMZn:

dimethylzinc

DTBSe:

ditertiarybutylselenide

ELO:

epitaxial lateral overgrowth

ELOG:

epitaxial layer overgrowth

FET:

field effect transistor

FPA:

focal plane arrays

GSMBE:

gas-source molecular beam epitaxy

HBT:

hetero-junction bipolar transistor

HEMT:

high electron mobility transistor

IC:

integrated circuit

IMP:

interdiffused multilayer process

IR:

infrared

LED:

light-emitting diodes

LPE:

liquid phase epitaxy

MBE:

molecular beam epitaxy

MCT:

mercury cadmium telluride

MFC:

mass flow controllers

ML:

monolayer

MOCVD:

metal-organic chemical vapor deposition

MODFET:

modulation-doped field effect transistor

MOMBE:

metalorganic molecular beam epitaxy

MOVPE:

metalorganic vapor phase epitaxy

MQW:

multiple quantum well

MWIR:

medium-wavelength infrared

PC:

photoconductive

PL:

photoluminescence

PV:

photovoltaic

QD:

quantum dot

QW:

quantum well

RF:

radio frequency

RHEED:

reflection high-energy electron diffraction

SVP:

saturated vapor pressure

TBA:

tertiarybutylarsine

TBP:

tertiarybutylphosphine

TEGa:

triethylgallium

TEN:

triethylamine

TMSb:

trimethylantimony

TPV:

thermophotovoltaic

UV:

ultraviolet

VB:

valence band

VCSEL:

vertical-cavity surface-emitting laser

VFE:

vector flow epitaxy

VPE:

vapor phase epitaxy

References

  1. D. Elwell, H. J. Scheel: Crystal Growth from High-Temperature Solutions (Academic, New York 1975)

    Google Scholar 

  2. H. Nelson: RCA Rev. 24, 603 (1963)

    Google Scholar 

  3. R. L. Moon: J. Cryst. Growth 170, 1 (1997)

    CAS  Google Scholar 

  4. H. J. Scheel: The Technology of Crystal Growth and Epitaxy, ed. by H. J. Scheel, T. Fukuda (Wiley, Chichester 2003)

    Google Scholar 

  5. P. Capper, T. Tung, L. Colombo: Narrow-Gap II–VI Compounds for Optoelectronic and Electromagnetic Applications, ed. by P. Capper (Chapman & Hall, London 1997)

    Google Scholar 

  6. M. B. Panish, I. Hayashi, S. Sumski: Appl. Phys. Lett. 16, 326 (1970)

    CAS  Google Scholar 

  7. M. G. Astles: Liquid Phase Epitaxial Growth of III-V Compound Semiconductor Materials and their Device Applications (IOP, Bristol 1990)

    Google Scholar 

  8. V. A. Dmitriev: Physica B 185, 440 (1993)

    CAS  Google Scholar 

  9. T. Ciszek: The Technology of Crystal Growth and Epitaxy, ed. by H. J. Scheel, T. Fukuda (Wiley, Chichester 2003)

    Google Scholar 

  10. M. I. Alonso, K. Winer: Phys. Rev. B 39, 10056 (1989)

    CAS  Google Scholar 

  11. V. A. Dmitriev: Properties of Silicon Carbide, EMIS Datareview Series, ed. by G. L. Harris (IEE, London 1995) p. 214

    Google Scholar 

  12. Y. Mao, A. Krier: Mater. Res. Soc. Symp. Proc 450, 49 (1997)

    CAS  Google Scholar 

  13. A. Krier, Z. Labadi, A. Manniche: J. Phys. D: Appl. Phys. 32, 2587 (1999)

    CAS  Google Scholar 

  14. M. Mauk: private communication (2004)

    Google Scholar 

  15. H. Yamane, M. Shimada, T. Sekiguchi, F. J. DiSalvo: J. Cryst. Growth 186, 8 (1998)

    CAS  Google Scholar 

  16. C. Klemenz, H. J. Scheel: J. Cryst Growth 211, 62 (2000)

    CAS  Google Scholar 

  17. A. Krier, H. H. Gao, V. V. Sherstinov: IEE Proc. Optoelectron 147, 217 (2000)

    CAS  Google Scholar 

  18. E. R. Rubstov, V. V. Kuznetsov, O. A. Lebedev: Inorg. Mater. 34, 422 (1998)

    Google Scholar 

  19. M. G. Mauk, Z. A. Shellenbarger, P. E. Sims, W. Bloothoofd, J. B. McNeely, S. R. Collins, P. I. Rabinowitz, R. B. Hall, L. C. DiNetta, A. M. Barnett: J. Cryst Growth 211, 411 (2000)

    CAS  Google Scholar 

  20. J.-i. Nishizawa, K. Suto: Widegap II–VI Compounds for Optoelectronic Applications, ed. by H. E. Ruda (Chapman & Hall, London 1992)

    Google Scholar 

  21. F. Sakurai, M. Motozawa, K. Suto, J.-i. Nishizawa: J. Cryst Growth 172, 75 (1997)

    CAS  Google Scholar 

  22. M. G. Astles: Properties of Narrow Gap Cadmium-Based Compounds, EMIS Datareview series, ed. by P. Capper (IEE, London 1994) pp. 13, 380

    Google Scholar 

  23. B. Pelliciari, J. P. Chamonal, G. L. Destefanis, L. D. Cioccio: Proc. SPIE 865, 22 (1987)

    Google Scholar 

  24. P. Belca, P. A. Wolff, R. L. Aggarwal, S. Y. Yuen: J. Vac. Sci. Technol. A 3, 116 (1985)

    Google Scholar 

  25. S. H. Shin, J. Pasko, D. Lo: Mater. Res. Soc. Symp. Proc. 89, 267 (1987)

    CAS  Google Scholar 

  26. A. Wasenczuk, A. F. M. Willoughby, P. Mackett, E. S. OʼKeefe, P. Capper, C. D. Maxey: J. Cryst. Growth 159, 1090 (1996)

    CAS  Google Scholar 

  27. T. Tung, L. V. DeArmond, R. F. Herald: Proc. SPIE 1735, 109–134 (1992)

    CAS  Google Scholar 

  28. P. W. Norton, P. LoVecchio, G. N. Pultz: Proc. SPIE 2228, 73 (1994)

    CAS  Google Scholar 

  29. P. Capper, J. Gower, C. Maxey, E. OʼKeefe, J. Harris, L. Bartlett, S. Dean: Growth and Processing of Electronic Materials, ed. by N. McN. Alford (IOM Communications, London 1998)

    Google Scholar 

  30. C. C. Wang: J. Vac. Sci. Technol. B 9, 1740 (1991)

    CAS  Google Scholar 

  31. T.N. Casselman, G.R. Chapman, K. Kosai, et al.: U.S. Workshop on Physics and Chemistry of MCT and other II-VI compounds, Dallas, TX (Oct. 1991)

    Google Scholar 

  32. R. S. Patrick, A.-B. Chen, A. Sher, M. A. Berding: J. Vac. Sci. Technol. A 6, 2643 (1988)

    CAS  Google Scholar 

  33. A. Rogalski: New Ternary Alloy Systems for Infrared Detectors (SPIE, Bellingham 1994)

    Google Scholar 

  34. A. A. Chernov, H. J. Scheel: J. Cryst. Growth 149, 187 (1996)

    Google Scholar 

  35. H. M. Manasevit, W. I. Simpson: J. Electrochem. Soc. 116, 1725 (1969)

    CAS  Google Scholar 

  36. A. A. Chernov: Kinetic processes in vapor phase growth. In: Handbook of Crystal Growth, ed. by D. T. J. Hurle (Elsevier, Amsterdam 1994)

    Google Scholar 

  37. G. B. Stringfellow: J. Cryst. Growth 115, 1 (1991)

    CAS  Google Scholar 

  38. D. M. Frigo, W. W. van Berkel, W. A. H. Maassen, G. P. M. van Mier, J.H. Wilkie, A. W. Gal: J. Cryst. Growth 124, 99 (1992)

    CAS  Google Scholar 

  39. S. Tompa, M. A. McKee, C. Beckham, P. A. Zwadzki, J. M. Colabella, P. D. Reinert, K. Capuder, R. A. Stall, P. E. Norris: J. Cryst. Growth 93, 220 (1988)

    CAS  Google Scholar 

  40. X. Zhang, I. Moerman, C. Sys, P. Demeester, J. A. Crawley, E. J. Thrush: J. Cryst. Growth 170, 83 (1997)

    CAS  Google Scholar 

  41. P. M. Frijlink, J. L. Nicolas, P. Suchet: J. Cryst. Growth 107, 166 (1991)

    CAS  Google Scholar 

  42. D. W. Kisker, J. N. Miller, G. B. Stringfellow: Appl. Phys. Lett. 40, 614 (1982)

    CAS  Google Scholar 

  43. C. A. Larson, N. I. Buchan, S. H. Li, G. B. Stringfellow: J. Cryst. Growth 93, 15 (1988)

    Google Scholar 

  44. M. W. Raynor, V. H. Houlding, H. H. Funke, R. Frye, J. A. Dietz: J. Cryst. Growth 248, 77–81 (2003)

    CAS  Google Scholar 

  45. R. M. Biefeld, R. W. Gedgridge Jr.: J. Cryst. Growth 124, 150 (1992)

    CAS  Google Scholar 

  46. C. A. Wang, S. Salim, K. F. Jensen, A. C. Jones: J. Cryst. Growth 170, 55 (1997)

    CAS  Google Scholar 

  47. S. Nakamura: Jpn. J. Appl. Phys. 30, 1620 (1991)

    CAS  Google Scholar 

  48. A. Stafford, S. J. C. Irvine, K. Jacobs. Bougrioua, I. Moerman, E. J. Thrush, L. Considine: J. Cryst. Growth 221, 142 (2000)

    CAS  Google Scholar 

  49. S. Keller, S. P. DenBaars: J. Cryst. Growth 248, 479 (2003)

    CAS  Google Scholar 

  50. B. Cockayne, P. J. Wright: J. Cryst. Growth 68, 223 (1984)

    CAS  Google Scholar 

  51. W. Bell, J. Stevenson, D. J. Cole-Hamilton, J. E. Hails: Polyhedron 13, 1253 (1994)

    CAS  Google Scholar 

  52. J. Tunnicliffe, S. J. C. Irvine, O. D. Dosser, J. B. Mullin: J. Cryst. Growth 68, 245 (1984)

    CAS  Google Scholar 

  53. S. Fujita, S. Fujita: J. Cryst. Growth 145, 552 (1994)

    CAS  Google Scholar 

  54. S. Fujita, A. Tababe, T. Sakamoto, M. Isemura, S. Fujita: J. Cryst. Growth 93, 259 (1988)

    CAS  Google Scholar 

  55. S. J. C. Irvine, M. U. Ahmed, P. Prete: J. Electron. Mater. 27, 763 (1988)

    Google Scholar 

  56. J. Wang, G. Du, B. Zhao, X. Yang, Y. Zhang, Y. Ma, D. Liu, Y. Chang, H. Wang, H. Yang, S. Yang: J. Cryst. Growth 255, 293 (2003)

    CAS  Google Scholar 

  57. A. Y. Cho: J. Cryst. Growth 150, 1 (1995)

    CAS  Google Scholar 

  58. C. T. Foxon: J. Cryst. Growth 251, 1–8 (2003)

    CAS  Google Scholar 

  59. B. A. Joyce, T. B. Joyce: J. Cryst. Growth 264, 605 (2004)

    CAS  Google Scholar 

  60. A. Y. Cho: Molecular Beam Epitaxy (AIP, New York 1994)

    Google Scholar 

  61. E. H. C. Parker: The Technology and Physics of Molecular Beam Epitaxy (Plenum, New York 1985)

    Google Scholar 

  62. B. A. Joyce, R. R. Bradley: Philos. Mag. 14, 289–299 (1966)

    CAS  Google Scholar 

  63. J. R. Arthur: J. Appl. Phys. 39, 4032 (1968)

    CAS  Google Scholar 

  64. A. Y. Cho: J. Vac. Sci. Technol. 8, 31 (1971)

    Google Scholar 

  65. A. Y. Cho: Appl. Phys. Lett. 19, 467 (1971)

    CAS  Google Scholar 

  66. J. W. Robinson, M. Ilegems: Rev. Sci. Instrum. 49, 205 (1978)

    CAS  Google Scholar 

  67. P. A. Barnes, A. Y. Cho: Appl. Phys. Lett. 33, 651 (1978)

    CAS  Google Scholar 

  68. W. T. Tsang: Appl. Phys. Lett. 34, 473 (1979)

    CAS  Google Scholar 

  69. A. Y. Cho, K. Y. Cheng: Appl. Phys. Lett. 38, 360 (1981)

    CAS  Google Scholar 

  70. L. L. Chang, L. Esaki, W. E. Howard, R. Ludeke: J. Vac. Sci. Technol. 10, 11 (1973)

    CAS  Google Scholar 

  71. H. Sakaki: J. Cryst. Growth 251, 9 (2003)

    CAS  Google Scholar 

  72. A. Y. Cho: J. Appl. Phys. 41, 2780 (1970)

    CAS  Google Scholar 

  73. M. D. Pashley, K. W. Haberern, J. M. Woodall: J. Vac. Sci. Technol. 6, 1468 (1988)

    CAS  Google Scholar 

  74. J. J. Harris, B. A. Joyce, P. J. Dobson: Surf. Sci. 103, L90 (1981)

    CAS  Google Scholar 

  75. J. H. Neave, B. A. Joyce, P. J. Dobson, N. Norton: Appl. Phys. 31, 1 (1983)

    Google Scholar 

  76. C. T. Foxon, M. R. Boudry, B. A. Joyce: Surf. Sci. 44, 69 (1974)

    CAS  Google Scholar 

  77. J. R. Arthur: Surf. Sci. 43, 449 (1974)

    CAS  Google Scholar 

  78. C. T. Foxon, J. A. Harvey, B. A. Joyce: J. Phys. Chem. Solids 34, 1693 (1973)

    CAS  Google Scholar 

  79. C. T. Foxon, B. A. Joyce: Surf. Sci. 50, 434 (1975)

    CAS  Google Scholar 

  80. C. T. Foxon, B. A. Joyce: Surf. Sci. 64, 293 (1977)

    CAS  Google Scholar 

  81. E. S. Tok, J. H. Neave, J. Zhang, B. A. Joyce, T. S. Jones: Surf. Sci. 374, 397 (1997)

    CAS  Google Scholar 

  82. A. Y. Cho, J. R. Arthur: Prog. Solid State Chem. 10(3), 157–191 (1975)

    Google Scholar 

  83. C. T. Foxon, B. A. Joyce: J. Cryst. Growth 44, 75 (1978)

    CAS  Google Scholar 

  84. C. T. Foxon, B. A. Joyce, M. T. Norris: J. Cryst. Growth 49, 132 (1980)

    CAS  Google Scholar 

  85. M. A. Herman, H. Sitter: Molecular Beam Epitaxy, Springer Ser. Mater. Sci., Vol. 7 (Springer, Berlin, Heidelberg 1988) p. 7

    Google Scholar 

  86. J. Saito, K. Nambu, T. Ishikawa, K. Kondo: J. Cryst. Growth 95, 322 (1989)

    CAS  Google Scholar 

  87. M. Bafleur, A. Munoz-Yague, A. Rocher: J. Cryst. Growth 59, 531 (1982)

    CAS  Google Scholar 

  88. Y. G. Chai, R. Chow: Appl. Phys. Lett. 38, 796 (1981)

    CAS  Google Scholar 

  89. C. E. C. Wood, L. Rathburn, H. Ohmo, D. DeSimone: J. Cryst. Growth 51, 299 (1981)

    CAS  Google Scholar 

  90. S. Izumi, N. Hayafuji, T. Sonoda, S. Takamiya, S. Mitsui: J. Cryst. Growth 150, 7 (1995)

    CAS  Google Scholar 

  91. J. H. Neave, P. Blood, B. A. Joyce: Appl. Phys. Lett. 36(4), 311 (1980)

    CAS  Google Scholar 

  92. C. R. Stanley, R. F. C. Farrow, P. W. Sullivan: The Technology and Physics of Molecular Beam Epitaxy, ed. by E. H. C. Parker (Plenum, New York 1985)

    Google Scholar 

  93. M. B. Panish: J. Electrochem. Soc. 127, 2729 (1980)

    CAS  Google Scholar 

  94. A. R. Calawa: Appl. Phys. Lett. 38(9), 701 (1981)

    CAS  Google Scholar 

  95. E. Veuhoff, W. Pletschen, P. Balk, H. Luth: J. Cryst. Growth 55, 30 (1981)

    CAS  Google Scholar 

  96. N. Putz, E. Veuhoff, H. Heinicke, H. Luth, P. J. Balk: J. Vac. Sci. Technol. 3(2), 671 (1985)

    Google Scholar 

  97. W. T. Tsang: Appl. Phys. Lett. 45(11), 1234 (1984)

    CAS  Google Scholar 

  98. W. T. Tsang: J. Vac. Sci. Technol. B 3(2), 666 (1985)

    CAS  Google Scholar 

  99. W. T. Tsang: Appl. Phys. Lett. 49(3), 170 (1986)

    CAS  Google Scholar 

  100. T. H. Chiu, W. T. Tsang, J. E. Cunningham, A. Robertson: J. Appl. Phys. 62(6), 2302 (1987)

    CAS  Google Scholar 

  101. W. T. Tsang, R. C. Miller: Appl. Phys. Lett. 48(19), 1288 (1986)

    CAS  Google Scholar 

  102. J. S. Foord, C. L. Levoguer, G. J. Davies, P. J. Skevington: J. Cryst. Growth 136, 109 (1994)

    Google Scholar 

  103. M. Weyers, J. Musolf, D. Marx, A. Kohl, P. Balk: J. Cryst. Growth 105, 383–392 (1990)

    CAS  Google Scholar 

  104. R. J. Malik, R. N. Nottenberg, E. F. Schubert, J. F. Walker, R. W. Ryan: Appl. Phys. Lett. 53, 2661 (1988)

    CAS  Google Scholar 

  105. F. Lelarge, J. J. Sanchez, F. Gaborit, J. L. Gentner: J. Cryst. Growth 251, 130 (2003)

    CAS  Google Scholar 

  106. A. Y. Cho: J. Appl. Phys. 50, 6143 (1979)

    Google Scholar 

  107. R. A. Stall, C. E. C. Wood, P. D. Kirchner, L. F. Eastman: Electron. Lett. 16, 171 (1980)

    CAS  Google Scholar 

  108. R. Dingle, C. Weisbuch, H. L. Stormer, H. Morkoc, A. Y. Cho: Appl. Phys. Lett. 40, 507 (1982)

    CAS  Google Scholar 

  109. G. B. Stringfellow, R. Stall, W. Koschel: Appl. Phys. Lett. 38, 156 (1981)

    CAS  Google Scholar 

  110. C. R. Stanley, M. C. Holland, A. H. Kean, J. M. Chamberlain, R. T. Grimes, M. B. Stanaway: J. Cryst. Growth 111, 14 (1991)

    CAS  Google Scholar 

  111. H. G. B. Hicks, D. F. Manley: Solid State Commun. 7, 1463 (1969)

    CAS  Google Scholar 

  112. C. T. Foxon, J. J. Harris, D. Hilton, J. Hewett, C. Roberts: Semicond. Sci. Technol. 4, 582 (1989)

    CAS  Google Scholar 

  113. K. Ploog: J. Cryst. Growth 81, 304 (1987)

    CAS  Google Scholar 

  114. H. Tanaka, M. Mushiage: J. Cryst. Growth 111, 1043 (1991)

    CAS  Google Scholar 

  115. J. Miller: III–Vs Rev. 4(3), 44 (1991)

    Google Scholar 

  116. D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. R. Korsh, M. V. Maximov, Y. M. Shenyakov, B. V. Volovik, A. F. Tsatsalnokov, P. S. Kopiev, Zh. I. Alferov: Thin Solid Films 367, 235 (2000)

    CAS  Google Scholar 

  117. S. Nakamura, T. Mukai, M. Senoh: Appl. Phys. Lett. 64(13), 1689 (1994)

    Google Scholar 

  118. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto: Jpn. J. Appl. Phys. 35, 74 (1996)

    Google Scholar 

  119. H. Morkoç: J. Mater. Sci. Mater. El. 12, 677 (2001)

    Google Scholar 

  120. S. E. Hooper, M. Kauer, V. Bousquet, K. Johnson, J. M. Barnes, J. Heffernan: Electron. Lett. 40(1), 33 (2004)

    CAS  Google Scholar 

  121. N. Grandjean, M. Leroux, J. Massies, M. Laügt: Jpn. J. Appl. Phys. 38, 618 (1999)

    CAS  Google Scholar 

  122. M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, Y. Yazawa: Jpn. J. Appl. Phys. 35, 1273 (1996)

    CAS  Google Scholar 

  123. H. Riechert, A. Ramakrishnan, G. Steinle: Semicond. Sci. Technol. 17, 892 (2002)

    CAS  Google Scholar 

  124. M. Kondow, T. Kitatani: Semicond. Sci. Technol. 17, 746 (2002)

    CAS  Google Scholar 

  125. J. S. Harris, S. R. Bank, M. A. Wistey, H. B. Yuen: IEE Proc. Optoelectron. 151(5), 407 (2004)

    CAS  Google Scholar 

  126. H. Ohno: J. Cryst. Growth 251, 285 (2003)

    CAS  Google Scholar 

  127. H. J. Osten, E. Bugiel, O. Kirfel, M. Czernohorsky, A. Fissel: J. Cryst. Growth 278, 18 (2005)

    CAS  Google Scholar 

  128. F.-J. Meyer zu Heringdolf, M. C. Reuter, R. M. Tromp: Nature 412, 517 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Capper Dr. , Stuart Irvine Prof. or Tim Joyce Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Capper, P., Irvine, S., Joyce, T. (2006). Epitaxial Crystal Growth: Methods and Materials. In: Kasap, S., Capper, P. (eds) Springer Handbook of Electronic and Photonic Materials. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-29185-7_14

Download citation

Publish with us

Policies and ethics