Skip to main content

Tailoring the Composition of Self-Reinforced Silicon Nitride Ceramics to Enhance Mechanical Behavior

  • Conference paper
Fracture Mechanics of Ceramics

Part of the book series: Fracture Mechanics of Ceramics ((FMOC,volume 14))

Abstract

Studies have shown that seeding allows for greater control of the microstructure of self-reinforced beta-silicon nitride based ceramics, which when combined with tailoring of the sintering additives can results in significant improvements in fracture toughness and strength. Similar behavior was noted in alpha-SiAlONs. In beta-Si3N4 ceramics in which alumina serves as one of the additives, the larger elongated reinforcing grains result from the epitaxial deposition of Si6-zAlzOzN8-z layers on the Si3N4 core. Structural models show that the bond strength of the interface between the SiAlON and the amorphous intergranular film increases as the Al and O contents of the SiAlON increase. This is consistent with experiments that revealed interfacial debonding was promoted when the z-value of the SiAlON epitaxial layer was reduced. Compositional tailoring that leads to enhanced interfacial debonding and an increase in the fracture toughness.

For a number of applications, creep resistance is also required in these ceramics. Recent results have been obtained in self-reinforced silicon nitride ceramics where controlled increases in the fraction of larger elongated reinforeing grains were found to reduce the creep rates. However, viscous flow in the amorphous intergranular films (IGF) in silicon nitride-based ceramics significantly impact their creep behavior and mechanical reliability at elevated temperatures. Recent studies of bulk Si-based oxynitride glasses have shown that increasing the nitrogen to oxygen (N∶O), rare earth (RE): aluminum (Al) ratios of the glass and using smaller RE ions raise the glass viscosities. Creep models suggest that this will improve the creep resistance of the silicon nitride ceramics, which is supported by the results of creep studies. The above findings are providing a framework for designing the next generation of silicon nitride-based ceramics by microstructural and compositional tailoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Savitz, “Commercialization of Advanced Structural Ceramics, Part I: Patience is a Necessity,” Am. Ceram. Soc. Bulletin 78(1), 53–56 (1999).

    CAS  Google Scholar 

  2. K. Moerganthaler, private communication.

    Google Scholar 

  3. P. F. Becher, E. Y. Sun, K. P. Plucknett, K. B. Alexander, C-H Hsueh, H-T Lin, S. B. Waters, C. G. Westmoreland, E-S Kang, K. Hirao, and M. Brito, “Microstructural Design of Silicon Nitride with Improved Fracture Toughness, Part I: Effects of Grain Shape and Size,” J. Am. Ceram. Soc., 81(11) 2821–30 (1998).

    Article  CAS  Google Scholar 

  4. P. F. Becher, C. H. Hsueh, K. B. Alexander, and E. Y. Sun, “The Influence of Reinforcement Content and Diameter on the R-Curve Response in SiC Whisker-Reinforced Alumina,” J. Am. Ceram. Soc., 79(2) 298–304 (1996).

    Article  CAS  Google Scholar 

  5. P. F. Becher, “Microstructural Design of Toughened Ceramics,” J. Am. Ceram. Soc., 74(2) 255–69 (1991).

    Article  CAS  Google Scholar 

  6. A. G. Evans, “Perspective on the Development of High-Toughness Ceramics,” J. Am. Ceram. Soc., 73(1) 187–206 (1990).

    Article  CAS  Google Scholar 

  7. C1161-02c Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature, Developed by Subcommitte: C28.01, ASTM Book of Standards, Volume: 15.01, ASTM International, West Conshohocken, PA, 2003.

    Google Scholar 

  8. H. Kawamoto, Y. Takigawa, K. Hiramatsu, and A. Okada, “Behavior of Crack-Grow Resistance in Toughened Anisotropic Silicon Nitride Ceramics,” in Key Engineer Materials, Vols. 175–176: Engineering Ceramics, edited by P. Sajgalik and Z. Lences, (Trans Tech Publications, Zurich, 2000), pp. 241–252.

    Google Scholar 

  9. a. K. Hirao, T. Nagaoka, M. E. Brito, and S. Kanzaki, “Microstructure Control of Silicon Nitride by Seeding with Rodlike β-Silicon Nitride Particles,” J. Am. Ceram. Soc., 77, 1857–62 (1994). b. K. Hirao, T. Nagaoka, M. E. Brito, and S. Kanzaki, J. Ceram. Soc. Jpn. 104: 55–59 (1996).

    Article  CAS  Google Scholar 

  10. J. Kim, A. Rosenflanz, and I. W. Chen, “Microstructure Control of In-Situ Toughened α’-SiAlON Ceramics,” J. Am. Ceram. Soc., 83(7) 1819–21 (2000).

    CAS  Google Scholar 

  11. a. P. F. Becher, E. Y. Sun, C. H. Hsueh, K. B. Alexander, S. L. Hwang, S. B. Waters, and C. G. Westmoreland, “Debonding of Interfaces Between Beta-Silicon Nitride Whiskers and Si-Al-Y Oxynitride Glasses,” Acta. Metall., 44(10) 3881–93 (1996). b. E. Y. Sun, P. F. Becher, C. H. Hsueh, G. S. Painter, S. B. Waters, S. L. Hwang, and M. J. Hoffmann, “Debonding Behavior Between β-Si3N4 Whiskers and Oxynitride Glasses With And Without An Epitaxial β-SiAlON Interfacial Layers,” Acta. Mater., 47(9) 2777–85 (1999).

    CAS  Google Scholar 

  12. a. E. Y. Sun, P. F. Becher, C-H Hsueh, S. B. Waters, K. P. Plucknett, K. Hirao, and M. Brito, “Microstructural Design of Silicon Nitride with Improved Fracture Toughness, Part II: Effects of Additives,” J. Am. Ceram. Soc., 81(11) 2831–40 (1998). b. P. F. Becher, G. S. Painter, E. Y. Sun, C. H. Hsueh, and M. J. Lance, “The Importance of Amorphous Intergranular Films in Self-Reinforced Si3N4 Ceramics,” Acta. Mater., 48(12) 4493–99 (2000).

    Article  CAS  Google Scholar 

  13. G. S. Painter, P. F. Becher, and Ellen Y. Sun, “Bond Energetics at Intergranular Interfaces in Alumina-Doped Silicon Nitride,” J. Am. Ceram. Soc., 85(1) 65–67 (2002).

    CAS  Google Scholar 

  14. Y. Tajima and K. Urashima, “Improvement of Strength and Toughness of Silicon Nitride Ceramics,” in Tailoring of Mechanical Properties of Si 3N4 Ceramics, edited by M. J. Hoffmann and G. Petzow, (Kluwer Academic Publishers, Dordrecht, Netherlands, 1994), pp. 101–109.

    Google Scholar 

  15. C.-W. Li, J. Wimmer and J. J. Nick, “Tensile Strength of an In-Situ Reinforced Silicon Nitride Exhibiting R-Curve Behavior,” ECD meeting, January 2003, submitted to Ceramics Transactions.

    Google Scholar 

  16. H. T. Lin, unpublished results.

    Google Scholar 

  17. a. D. Wilkinson, “Creep Mechanisms in Multiphase Ceramic Materials,” J. Am. Ceram. Soc., 81(2) 275–99 (1998). b. J. R. Dryden and D. S. Wilkinson, “Three-Dimensional Analysis of the Creep Due to a Viscous Grain Boundary Phase,” Acta. Mater. 45(3) 1259–73 (1997).

    Article  CAS  MathSciNet  Google Scholar 

  18. W. E. Luecke and S. M. Wiederhorn, “A New Model for Tensile Creep of Silicon Nitride,” J. Am. Ceram. Soc. 82(10) 2769–78 (1999).

    Article  CAS  Google Scholar 

  19. P. F. Becher, S. B. Waters, C. G. Westmoreland, and L. Riester, “Influence of Composition on the Properties of SiREAl Oxynitride Glasses: RE=La, Nd, Gd, Y or Lu,” J. Am. Ceram. Soc., 85(4) 897–902 (2002).

    Article  CAS  Google Scholar 

  20. P. F. Becher and M. K. Ferber, “The Temperature Dependent Viscosity of SiREAl-Based Glasses As a Function of N:O and RE:Al Ratios. Where RE=La, Gd, Y and Lu,” to be published.

    Google Scholar 

  21. C.-M. Wang, X. Pan, M. J. Hoffmann, R. M. Cannon, and M. Rühle, “Grain Boundary Films in Rare-Earth-Based Silicon Nitride,” J. Am. Ceram. Soc., 79(3) 788–92 (1996).

    Article  CAS  Google Scholar 

  22. M. K. Cinibulk, G. Thomas and S. M. Johnson, “Strength and Creep Behavior of Rare-Earth Disilicate-Silicon Nitride Ceramics,” J. Am. Ceram. Soc. 75(8) 2050–55 (1992).

    Article  CAS  Google Scholar 

  23. a. S. M. Wiederhorn and M. K. Ferber, “Silicon nitride for gas turbines,” Current Opinion in Solid State and Mater. Sci., 5: 311–16 (2001). b. F. Lofaj. S.M. Wiederhorn, G.G. Long. P.R. Jemian and M.K. Ferber, “Cavitation Creep in the Next Generation Silicon Nitride,” in Ceramic Materials and Components for Engines, edited by J.G. Heinrich and F. Aldinger (Wiley-VCH 2001), pp. 487 to 493.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Becher, P.F., Painter, G.S., Lin, H.T., Ferber, M.K. (2005). Tailoring the Composition of Self-Reinforced Silicon Nitride Ceramics to Enhance Mechanical Behavior. In: Bradt, R.C., Munz, D., Sakai, M., White, K.W. (eds) Fracture Mechanics of Ceramics. Fracture Mechanics of Ceramics, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-28920-5_26

Download citation

Publish with us

Policies and ethics