Skip to main content

Creep Investigation of SiCf-SiBC Composites

  • Conference paper
Fracture Mechanics of Ceramics

Part of the book series: Fracture Mechanics of Ceramics ((FMOC,volume 14))

  • 4355 Accesses

Abstract

The concept of ceramic matrix composites was proposed in the eighties to be used in the aeronautical and space domains. Classical SiCf-SiC have changed into complex materials, such as SiCf-SiBC investigated in this work: that composite is reinforced with SiC Hi-Nicalon fibers and has a multi-layer and self-sealing matrix. This matrix has been fabricated by means of several chemical vapor infiltrations with different compositions. Prior to the matrix infiltration, a pyrocarbon interphase has been deposited on the fibrous preform. The self-sealing property of this composite is due to the presence of boron in certain matrix layers, which will react with the atmosphere and particularly oxygen, to create a sealant glass, which protects pyrocarbon and SiC fibers.

Tensile creep behavior of this material was investigated in the 1373–1573 K temperature range, under stresses varying from 130 to 200 MPa, under oxidizing atmosphere. Unloading-reloading loops have permitted to follow the evolution of the damage parameter defined by Kachanov and Rabotnov. Microscopical analysis by means of scanning and transmission electron microscopies have shown microstructural modifications and damage creation in the crept materials. Creep results obtained under air have been compared to similar results under argon: it has been possible to determine the influence of oxygen (which corresponds to real environment for their use), and the efficiency of the sealant glass.

This work has then permitted to determine the creep mechanisms(s) involved in this composite and to precise the influence of oxidizing atmosphere on the mechanical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.P. Beesley, The application of CMCs in high integrity gas turbine engines, in: Ceramic and Metal Matrix Composites, CMMC 96, San Sebastian, Spain, Sept. 9–12, 1996, Proceedings ed. by Fuentes M., Martinez-Esnaola J.M., and Daniel A.M., Key Eng. Mat., 127-131, pp 165–174 (1997).

    Google Scholar 

  2. H. Ohnabe, S. Masaki, M. Onozuka, K. Miyahara, and T. Sasa, Potential application of ceramic matrix composites to aero-engine components, Composites Part A, 30A, 489–496 (1999).

    Article  CAS  Google Scholar 

  3. R. Renz, and W. Krenkel, C/C-SiC composites for high performance emergency brake systems, in: Composites: from Fundamentals to Exploitation), ECCM 9 June 4–7, 2000, Brighton, UK, (ECCM 9CD ROM C 2000, IOM Communications Ltd).

    Google Scholar 

  4. J.M. Staehler and L.P. Zawada, Performance of four ceramic-matrix composite divergent flap inserts following ground testing on an F110 turbofan engine, J. Amer. Ceram. Soc., 83, 1727–1738 (2000).

    Article  CAS  Google Scholar 

  5. J. Demmel, H. Lallinger, and G. Kopp, Applications of CMC-racks for high temperature processes, in: High Temperature Ceramic Matrix Composites, HTCMC4, Munchen, Germany, Oct 1–3, 2001, edited by W. Krenkel, R. Naslain, H. Schneider, (Wiley-VCH verlag GmbH, Weinheim, Germany), pp. 832–838.

    Google Scholar 

  6. F. Lamouroux, E. Bouillon, J.P. Cavalier, P. Spriet and G. Habarou, An improved long life duration CMC for jet aircraft engine applications, in: High Temperature Ceramic Matrix Composites, HTCMC4, Munchen, Germany, Oct 1–3, 2001, edited by W. Krenkel, R. Naslain, H. Schneider, (Wiley-VCH Verlag GmbH, Weinheim, Germany), pp. 783–788.

    Google Scholar 

  7. K. Nishi, J. Gotoh, and S. Aratama, Development of a 3D SiC/SiC component model for HOPE-X (H-2 Orbiting Plane Experimental), in: High Temperature Ceramic Matrix Composites, HTCMC4, Munchen, Germany, Oct 1–3, 2001, edited by W. Krenkel, R. Naslain, and H. Schneider, (Wiley-VCH Verlag GmbH, Weinheim, Germany), 754–759.

    Google Scholar 

  8. F. Christin, Design, fabrication, and application of thermostructural composites (TSC) like C/C, C/SiC, and SiC/SiC composites. Adv. Eng. Mater., 4[12], 903–912 (2002).

    Article  CAS  Google Scholar 

  9. G. Farizy, Mecanisme de fluage sous air de composites SiCf-SiBC a matrice auto-cicatrisante—Creep mechanism under air of SiCf-SiBC composites with a self-sealing matrix, Thèse de Doctorat of the University of Caen, (2002)

    Google Scholar 

  10. S. Goujard, L. Vandenbulcke, J. Rey, J.L. Charvet and H. Tawil, 1990. Matériaux composites réfractaires protégés contre la corrosion et procédé pour son élaboration. SEP Patent, FR 9013323 (26 Oct 1990), EP 486 347 (20 May 1992), CA 2 054 257 (27 April 1992), JO 4 263 076 (18 Sept 1992), US 5 217 755 (8 June 1993).

    Google Scholar 

  11. F. Christin, R. Naslain, and C. Bernard, A thermodynamic and experimental approach of silicon carbide CVD. Application to the CVD-infiltration of porous carbon-carbon composites, in: 7th International Conference on CVI, Proceedings ed. by T.O. Sedwick, and H. Lydtin, (The Electrochemical Society, Princeton, 1979), pp. 499–514.

    Google Scholar 

  12. G. Boitier, H. Maupas, H. Cubero, and J.L. Chermant, Sur les essais de traction à longs termes à haute température, Rev. Comp. Mat. Avancés, 7, 143–172 (1997).

    Google Scholar 

  13. G. Boitier, H. Cubero, J.L. Chermant, Some recommendations for long term high temperature tests, in: High Temperature Ceramic Matrix Composites, HT-CMC 3, Osaka, Japan, Sept. 6–9, 1998, (CSJ Series, Publications of the Ceramic Society of Japon), Vol. 3, 309–312 (1999).

    Google Scholar 

  14. L. Kachanov, Rupture time under creep conditions, Izv. Akad. Nauk. SSR, 8, 26–31 (1958).

    Google Scholar 

  15. M. Rabotnov, Creep Problem in Structural Members, North-Holland, Amsterdam (1969).

    Google Scholar 

  16. O. Penas, Etude de composites SiC/SiBC à matrice multiséquencée en fatigue cyclique à hautes températures sous air — Investigation of cyclic fatigue at high temperatures of SiC/SiBC composites with self-sealing matrix, Thèse de Doctorat of INSA of Lyon, (2002).

    Google Scholar 

  17. C. Rospars, J.L. Chermant, and P. Ladevèze, On a first creep model for a 2D SiCf-SiC composite, Mat. Sci. Eng., A250, 264–269 (1998).

    Article  Google Scholar 

  18. G. Boitier, J.L. Chermant, and J. Vicens, Understanding the creep behavior of a 2.5D Cf-SiC composite. II: Experimental specifications and macroscopical mechanical creep response. Mat. Sci. Eng., A289, 265–275 (2000).

    Article  Google Scholar 

  19. S. Darzens, J.L. Chermant, and J.C. Sangleboeuf, A comparison of the creep behavior of SiCf-SiBC composites, with Hi-Nicalon and NLM 202 SiCf fibers. J. Amer. Ceram. Soc., 86, … (2003).

    Google Scholar 

  20. G. Farizy, J.L. Chermant, J. Vicens, and J. C. Sangleboeuf, Fluage de composites SiCf-SiBC sous air et sous argon: points communs et influence de l’oxydation, in: 13èmes Journées Nationales sur les Composites, JNC 13, Strasbourg, France, 12–14 March 2003. Proceedings ed. by Rémond Y., … (2003).

    Google Scholar 

  21. J. Serra, Image Analysis and Mathematical Morphology, (Academic Press, New-York, 1982).

    MATH  Google Scholar 

  22. M. Coster, and J.L. Chermant, Précis d’analyse d’images, (Les Editions du CNRS, Paris, 1985; 2nd edition, Les Presses du CNRS, Paris, 1989).

    Google Scholar 

  23. J.L. Chermant, Creep behavior of ceramic matrix composites, Sil. Ind., 60, 261–273 (1995).

    CAS  Google Scholar 

  24. J.L. Chermant, G. Boitier, S. Darzens, G. Farizy, J. Vicens, and J.C. Sangleboeuf. The creep mechanism of ceramic matrix composites at low temperature and stress, by a material science approach, in: Structural Ceramics and Ceramic Composites for High-Temperature Application, Sevilla, Spain, Oct. 7–12, 2001, J. Eur. Ceram. Soc., 22, 2443–2460 (2002).

    CAS  Google Scholar 

  25. R. Bodet, X. Bourrat, J. Lamon, and R. Naslain, Tensile creep behaviour of a silicon carbide-based fibre with a low oxygen content, J. Mater. Sci., 30, 661–677 (1995).

    Article  CAS  ADS  Google Scholar 

  26. M. Narisawa, K. Sano, Y. Katase, and K. Okamura, Temperature-atmosphere dependendence of creep behaviour of advanced SiC-based fibers, in: Proceedings of the 7 th Intl Conference on Creep and Fatigue at Elevated Temperatures, CREEP 7, Japan Society of Mechanical Engineers, Tsukuba, Japan, June 3–8, pp 281–285 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Farizy, G., Chermant, JL., Vicens, J., Sangleboeuf, JC. (2005). Creep Investigation of SiCf-SiBC Composites. In: Bradt, R.C., Munz, D., Sakai, M., White, K.W. (eds) Fracture Mechanics of Ceramics. Fracture Mechanics of Ceramics, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-28920-5_21

Download citation

Publish with us

Policies and ethics