Skip to main content

Creep Behavior and Mechanism for CMCs with Continuous Ceramic Fibers

  • Conference paper
Fracture Mechanics of Ceramics

Abstract

This paper gives an overview on the creep behavior and mechanism of some CMCs, with a SiC ceramic matrix, such as Cf-SiC, SiCf-SiC and SiCf-SiBC. Tensile creep tests were conducted under argon and air in order to have the influence of the environmental conditions on the macroscopical mechanical response. Nevertheless, multi-scale and multi-technique approaches were required to identify and quantify mechanism(s) which is (are) involved in the creep behavior. The initiation and propagation of damages which are occurring under high stress and temperature conditions were investigated at mesoscopic, microscopic and nanoscopic scales using SEM, TEM and HREM, in order to identify the mechanism(s) involved at each scale. Automatic image analysis was used in order to quantify the evolution of some damage morphological parameters. The macroscopical creep behavior has been investigated through a damage mechanics approach which seems to be the most promising route. A good correlation was found between the kinetics of the damage mechanisms and the creep behavior. For such ceramic matrix composites, the governing mechanism is a damage-creep one, with an additional delay effect due to formation of a glass when tests are performed under air.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.R. Fohey, J.M. Battison and T.A. Nielsen, Ceramic composite turbine engine component evaluation, Ceram. Eng. Sci. Proc., 17, 459–466 (1995)

    Article  Google Scholar 

  2. P. Spriet, and G. Habarou, Applications of CMCs to turbojet engines: overview of the SEP experience, in: Ceramic and Metal Matrix Composites, CMMC 96, San Sebastian, Spain, Sept. 9–12, 1996, Proceedings edited by M. Fuentes, J.M. Martinez-Esnaola, and A.M. Daniel, Key Eng. Mat., 127–131, 1267–1276 (1997).

    Google Scholar 

  3. J.W. Brockmeyer, Ceramic matrix composite applications in advanced liquid fuel rocket engine turbomachinery, J. Eng. Gas Turbines & Power, Trans. ASME, 115, 58–63 (1999).

    Article  Google Scholar 

  4. M. Imuta, and J. Gotoh, Development of high temperature materials including CMCs for space application, in: High Temperature Ceramic Matrix Composites, HT-CMC 3, Osaka, Japan, Sep. 6–9, 1998, Proceedings edited by K. Niihara, K. Nakano, T. Sekino, and E. Yasuda, CSJ Series, Ceram. Soc. Jap., 3, 439–444 (1999).

    Google Scholar 

  5. K. Nishio, K.I. Igashira, K. Take, and T. Suemitsu, Development of a combustor liner composed of ceramic matrix composite, CMC, J. Eng. Gas. Turbines & Power, Trans. ASME, 121, 12–17 (1999).

    Article  CAS  Google Scholar 

  6. U. Trabandt, H.G. Wulz, and T. Schmid, CMC for hot structures and control surfaces of future launchers, in: High Temperature Ceramic Matrix Composites, HT-CMC 3, Osaka, Japan, Sep. 6–9, 1998. Proceedings edited by Niihara K., Nakano K., Sekino T., Yasuda E., CSJ Series. Ceram. Soc. Jap., 3, 445–450, (1999).

    Google Scholar 

  7. R.H. Jones, and C.H. Henager, High-temperature properties of SiC/SiC for fusion applications, J. Nucl. Mater. 212–215, 830–834 (1994).

    Article  Google Scholar 

  8. E. Medvedovski, High-alumina armor ceramic tile for ballistic protection, Amer. Ceram. Soc. Bull., 80, 25 (2001).

    CAS  Google Scholar 

  9. V. Bensimhon, Les matériaux composites dans le groupe SNECMA, AMACINFOS, 11, 1–2 (1999).

    Google Scholar 

  10. R. Renz, and W. Krenkel, C/C-SiC composites for high performance emergency brake systems, in: Composites: from Fundamentals to Exploitation, ECCM 9, June 4–7, 2000, Brighton, UK, ECCM 9 CD ROM C 2000, IOM Communications Ltd.

    Google Scholar 

  11. R. Gadow, and M. Speicher, Manufacturing and CMC-component development for brake disks in automatic applications, Ceram. Eng. Sci. Proc., 20, 551–558 (1999).

    Article  CAS  Google Scholar 

  12. J.L. Chermant, Intérêt des études multi-échelles et multi-techniques en science des matériaux: cas des composites a matrices céramiques, in: Matériaux 2002: De la Conception à la Mise en Oeuvre, Tours, France, 21–25 Oct. 2002. CD ROM edited by the University of Technology of Belfort-Montbéliard, France. 2002.

    Google Scholar 

  13. J.L. Chermant, G. Boitier, S. Darzens, G. Farizy, J. Vicens, and J.C. Sangleboeuf, The creep mechanism of ceramic matrix composites at low temperature and stress, by a material science approach, J. Eur. Ceram. Soc., 22, 2443–2460 (2002).

    Article  CAS  Google Scholar 

  14. F. Christin, R. Naslain, and C. Bernard, A thermodynamic and experimental approach of silicon carbide CVD. Application to the CVD-infiltration of porous carbon-carbon composites, in: Proceedings of the 7 th Conference on CVD, edited by T.O. Sedwick, and H. Lydtin (The Electrochemical Society, Princeton, 1979), pp 499–514.

    Google Scholar 

  15. S. Goujard, L. Vandenbulcke, J. Rey, J.L. Charvet, and H. Tawil, Matériaux composites réfractaires protégés contre la corrosion et procédé pour son élaboration, 1990, SEP Patent, FR 9013323 (26 Oct. 1990), EP 486 347 (20 May 1992), CA 2 054 257 (27 April 1992) JO 4 263 076 (18 Sept. 1992), US 5 217 755 (8 June 1993).

    Google Scholar 

  16. S. Goujard, and L. Vandenbulcke, Deposition of Si-B-C materials from the vapor phase for applications in ceramic matrix composites, Ceram. Trans., 46, 925–935 (1994).

    CAS  Google Scholar 

  17. G. Boitier, H. Maupas, H. Cubero, and J.L. Chermant, Sur les essais de traction à longs termes à haute température, Rev. Comp. Mat. Advancés, 7, 143–172 (1997).

    Google Scholar 

  18. M.G. Jenkins, S.M. Wiederhorn, and R.K. Shiffer, Creep Testing of Advanced Ceramics (Marcel Dekker, New-York, 1998), pp 171–222.

    Google Scholar 

  19. G. Boitier, H. Cubero, and J.L. Chermant. Some recommendations for long term high temperature tests, in: High Temperature Ceramic Matrix Composites, HT-CMC 3, Osaka, Japan, Sept. 6–9, 1998, CSJ Series, Publications of the Ceramic Society of Japon, Vol. 3, 309–312 (1999).

    Google Scholar 

  20. J. Serra, Image Analysis and Mathematical Morphology (Academic Press, New-York, 1982).

    MATH  Google Scholar 

  21. M. Coster, and J.L. Chermant, Précis d’analyse d’images (Les Editions du CNRS. 1985, Paris; 2nd edition, Les Presses du CNRS, Paris, 1989).

    Google Scholar 

  22. L. Kachanov, Rupture time under creep conditions, Izv. Akad. Nauk. SSR, 8, 26–31 (1958).

    Google Scholar 

  23. M. Rabotnov, Creep Problem in Structural Members (North-Holland, Amsterdam, 1969).

    Google Scholar 

  24. C. Rospars, J.L. Chermant, and P. Ladeveze. On a first creep model for a 2D SiCf-SiC composite. Mat. Sci. Eng., A250, 264–269 (1998).

    Article  Google Scholar 

  25. G. Sines, Z. Yang, and B.D. Vickers, Creep of carbon yarn and a carbon — carbon composite at high temperatures and high stresses, Carbon, 27, 403–415 (1989).

    Article  CAS  Google Scholar 

  26. K. Kogure, G. Sines, and J.G. Lavin, Structural studies of postereep, Pan-based, carbon filaments, Carbon, 32, 715–726 (1994).

    Article  CAS  Google Scholar 

  27. J.D. Hong, and R.F. Davis, Self diffusion of carbon-14 in high-purity and N-doped α-SiC single crystals, J. Amer. Ceram. Soc., 63(9–10), 546–552 (1980).

    Article  CAS  Google Scholar 

  28. J.D. Hong, R.F. Davis, and D.E. Newbury, Self-diffusion of silicon-30 in α-SiC single crystals, J. Mater. Sci., 16, 2485–2494 (1981).

    Article  CAS  ADS  Google Scholar 

  29. C.H. Carter, R.F. Davis, and J. Bentley, Kinetics and mechanisms of high-temperature creep in silicon carbide: II. Chemically vapor deposited, J. Amer. Ceram. Soc., 67, 732–740 (1984).

    Article  CAS  Google Scholar 

  30. S. Darzens, Fluage en traction sous argon et microstructure de composites SiCf-SiBC — Tensile creep under argon and microstructure of SiCf-SiBC composites, Thèse de Doctorat of the University of Caen, 2000.

    Google Scholar 

  31. G. Boitier, J. Vicens, and J.L. Chermant, Understanding the creep behavior of a 2.5D Cf-SiC composite. III: From mesoscale to nanoscale microstructural and morphological investigations towards creep mechanism. Mat. Sci. Eng., A313, 56–63 (2001).

    Google Scholar 

  32. S. Darzens, G. Farizy, J.L. Chermant, and J. Vicens, Quelques résultats de fluage sur les composites SiCf-SiBC — First results on creep of SiCf-SiBC composites, in: “12 èmes Journées Nationales sur les Composites JNC 12”, Cachan, France, 15–17 Nov. 2001. Proceedings edited by O. Allix, C. Cluzel, and J. Lamon, AMAC, Paris, 2000, pp 931–940.

    Google Scholar 

  33. G. Farizy, Mécanisme de fluage sous air de composites SiCf-SiBC, à matrice autocicatrisante — Creep mechanism under air of SiCf-SiBC with a self-healing matrix, Thèse de Doctorat of the University of Caen, 2002.

    Google Scholar 

  34. J.L. Chermant, G. Boitier, S. Darzens, M. Coster, and L. Chermant, Damage morphological parameters, In: 8 th European Congress for Stereology and Image Analysis, 8 ECSIA, Bordeaux, France, Sept. 4–7, 2001, Image Anal. Stereol., 20[3], 207–211 (2001).

    Google Scholar 

  35. S. Darzens, J.L. Chermant, J. Vicens, and J.C. Sangleboeuf, Understanding the creep behavior of SiCf-SiBC composites, Script. Mater., 45, 433–439 (2002).

    Article  Google Scholar 

  36. G. Boitier, J. Vicens, and J.L. Chermant, Carbon fiber “nanocreep” in creep-tested Cf-SiC composites, Scripta Mater., 38[6], 937–943 (1998).

    CAS  Google Scholar 

  37. G. Boitier, J.L. Chermant, and J. Vicens, Bridging at the nanometric scale in 2.5D Cf-SiC composites, Appl. Comp. Mat., 6, 279–287 (1999).

    Article  CAS  Google Scholar 

  38. P. Ladeveze, Sur une théorie de l’endommagement anisotrope, Internal Report, ENS Cachan, France, March 1983, n 34.

    Google Scholar 

  39. P. Ladeveze, On an anisotropic damage theory, in: Failure Criteria of Structured Media, (edited by J.P. Boehler, Balkema, Rotterdam, 1993), pp 355–363.

    Google Scholar 

  40. J.L. Chaboche, and J.F. Maire, New progress in micromechanics-based CDM models and their application to CMCs. Comp. Sci. Tech., 61, 2239–2246 (2001).

    Article  CAS  Google Scholar 

  41. P. Ladeveze, A. Gasser, and O. Allix, Damage mechanisms modeling for ceramic composites, J. Eng. Mat. Tech., 116, 331–336 (1994).

    Article  Google Scholar 

  42. A. Delanöé, and V. Faucheux, Etude de l’endommagement de CMC par des expériences de traction in-situ — Damage investigation of CMC by in-situ tests, Project of 3 rd year at ENSI-ISMRA, Caen, France, 2001.

    Google Scholar 

  43. J.P. Fauvarque, “Etude de l’endommagement de CMC SiCf-SiBC par des expériences de traction insitu — Damage investigation of SiCf-SiBC composites by in-situ tests”, Project of 3 rd year at ENSI-ISMRA, Caen, France, 2002.

    Google Scholar 

  44. S.F. Shuler, J.W. Holmes, X. Wu, and D. Roach, Influence of loading frequency on the roomtemperature of a carbon-fiber/SiC-matrix composite, J. Amer. Ceram. Soc., 76, 2327–2336 (1993).

    Article  CAS  Google Scholar 

  45. J.L. Chermant, and G. Boitier, The importance of damage and slow crack growth in the creep behavior of ceramic matrix composites, Adv. Comp. Mater., 8, 77–85 (1999).

    Article  CAS  Google Scholar 

  46. S. Darzens, J.L. Chermant, J. Vicens, and J.C. Sangleboeuf, Damage creep mechanisms of SiCf-SiBC composites, in: 26 th Annual Int1 Conference on Advanced Ceramics & Composites, Cocoa Beach, F1, USA, Jan. 13–18, 2002, Ceram. Eng. Sci. Proc., 23(3), 395–402 (2002).

    Article  CAS  Google Scholar 

  47. P. Reynaud, A. Dalmaz, D. Rouby, and G. Fantozzi, Mechanical stiffening of ceramic matrix composites induced by cyclic fatigue, Key Eng. Mat., 132–136, pp 1906–1909 (1997).

    Article  Google Scholar 

  48. R. Bodet, X. Bourrat, J. Lamon, and R. Naslain, Tensile creep behaviour of a silicon carbide-based fibre with a low oxygen content, J. Mater. Sci., 30, 661–677 (1995).

    Article  CAS  ADS  Google Scholar 

  49. G. Chollon, R. Pailler, and R. Naslain, Structure, composition and mechanical behavior at high temperature of the oxygen-free Hi-Nicalon fiber, in: High-Temperature Ceramic-Matrix Composite I: Design, Durability and Performance, HT-CMC 2, Aug. 20–24, 1995, Santa-Barbara, Ca, USA, Ceram. Trans., 57, 299–304 (1995).

    Google Scholar 

  50. R.E. Tressler, and J.A. DiCarlo, Creep and rupture of advanced ceramic fiber reinforcements, in: High-Temperature Ceramic-Matrix Composite I: Design, Durability and Performance, HT-CMC 2, Aug. 20–24, 1995, Santa-Barbara, Ca, USA, Ceram. Trans., 57, 141–155 (1995).

    CAS  Google Scholar 

  51. N. Hochet, M.H. Berger, and A.R. Bunsell, Microstructural evolution of the latest generation of a small-diameter SiC-based fibers tested at high temperatures, J. Microscopy, 185[2], 243–258 (1997).

    Article  CAS  Google Scholar 

  52. M. Narisawa, K. Sano, Y. Katase, and K. Okamura, Temperature-atmosphere dependence of creep behavior of advanced SiC-based fibers, in: Proceedings of the 7 th Int1 Conference on Creep and Fatigue at Elevated Temperatures, CREEP 7, Japan Society of Mechanical Engineers, Tsukuba, Japan, June 3–8, 2001, pp 281–285.

    Google Scholar 

  53. Y.W. Kwon, Multi-level approach for failure in woven fabric composites, Adv. Eng. Mater., 3[9], 713–717 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

This paper is dedicated to Drs Roger W. Davidge (Great-Britain, † Aug. 1997), Junn Nakayama (Japan, † Dec. 1991) and Reiner Pabst (Germany, † July 1986).

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Chermant, JL., Farizy, G., Boitier, G., Darzens, S., Vicens, J., Sangleboeuf, JC. (2005). Creep Behavior and Mechanism for CMCs with Continuous Ceramic Fibers. In: Bradt, R.C., Munz, D., Sakai, M., White, K.W. (eds) Fracture Mechanics of Ceramics. Fracture Mechanics of Ceramics, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-28920-5_16

Download citation

Publish with us

Policies and ethics