Skip to main content

Epitaxial Quantum Wires: Growth, Properties and Applications

  • Chapter
Nanowires and Nanobelts

Abstract

The opportunity to form one-dimensional (1D) materials and devices via epitaxially nucleated growth of whiskers was realized more than 30 years ago by Wagner and others [1]. At that time, technology as well as the general awareness of the technology on small length-scales only permitted whisker dimensions typically down to the micrometer region. It was first via the pioneering work of Hiruma and coworkers [2] at Hitachi during the early part of the 1990s that the nanometer dimension of nanowires were explored and brought to the level where the potential for nanoelectronic and photonic devices was realized. The approach of Hiruma has during the last few years been developed further by several groups, for instance that led by Peydong Yang at UC Berkeley and the one by Lars Samuelson at Lund University. Besides this special version of nanowire formation via epitaxially nucleated growth, various research groups have been developing the method of spontaneous sprouting of nanowires from catalytic nanoparticles, most noticed being the work by the Lieber group at Harvard University. Much of the present excitement in the field stems from the recent breakthrough in forming nanowires containing ideal heterostructure interfaces [3], hence allowing nanoelectronic [4] and nanophotonic heterostructure devices to be formed. In the following we first describe the background in terms of competitive or alternative methods for realization of one-dimensional semiconductor structures, with an emphasis on comparison between conventional top-down as opposed to self-assembly or bottom-up fabrication methods. We then present some recent progress related to the electronic structure of nanowires, including predictions of phenomena that should be feasible using existing technology. This is followed by a rather detailed description of state-of-the-art fabrication of homogeneous nanowires as well as those containing heterostructures along the one-dimensional axis of the wire. Finally we describe some of the technology required for the creation of electrically contacted nanowires with an emphasis on contact technologies and experimental results for simple and more complex 1D heterostructure devices. An outlook on which direction this technology might take then follows and we will give examples of future challenges and opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. S. Wagner, in Whisker Technology, Edited by A. P. Levitt, Wiley, New York (1970), pp. 47–119.

    Google Scholar 

  2. M. Yazawa, M. Koguchi and K. Hiruma, Heteroepitaxial ultrafine wire-like growth of InAs on GaAs substrates, Appl. Phys. Lett. 58 (1991) 1080.

    Google Scholar 

  3. M. T. Björk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert and L. R. Wallenberg, One-Dimensional Steeplechase for Electrons Realized, Nano Lett. 2 (2002) 87.

    Article  Google Scholar 

  4. M.T. Björk, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg and L. Samuelson, Nanowire Resonant Tunneling Diodes, Appl. Phys. Lett. 81 (2002) 4458.

    Article  Google Scholar 

  5. H. Sakaki, Scattering Suppression and High-Mobility Effect of Size-Quantized Electrons in Ultrafine Semiconductor Wire Structures, Jpn. J. Appl. Phys. 19 (1980) L735.

    Article  CAS  Google Scholar 

  6. S. Hara, J. Ishizaki, J. Motohisa, T. Fukui and H. Hasegawa, Formation and photoluminescence characterization of quantum well wires using multiatomic steps grown by vapor phase epitaxy, J. Cryst. Growth 145 (1994) 692.

    Article  CAS  Google Scholar 

  7. M. S. Miller, C. E. Pryor, H. Weman, L. A. Samoska, H. Kroemer and P. M. Petroff, Serpentine superlattice: concept and first results, J. Cryst. Growth 111 (1991) 323.

    Article  CAS  Google Scholar 

  8. R. Bhat, E. Kapon, D. M. Hwang, M. A. Koza and C. P. Yun, Patterned quantum well heterostructures by OMCVD on non-planar substrates: Applications to extremely narrow SQW lasers, J. Cryst. Growth. 93 (1988) 850.

    Article  CAS  Google Scholar 

  9. E. Kapon, D. M. Hwang and R. Bhat, Stimulated Emission in Semiconductor Quantum Wire Heterostructures, Phys. Rev. Lett. 63 (1989) 430.

    Article  CAS  Google Scholar 

  10. W. Seifert, N. Carlsson, M. Miller, M.-E. Pistol, L. Samuelson and L. R. Wallenberg, In-situ Growth of Quantum Dot Structures by the Stranski-Krastanow Growth Mode, Prog. Crystal Growth Charact. 33 (1996) 423.

    Article  CAS  Google Scholar 

  11. I. E. Itskevich, T. Ihn, A. Thornton, M. Henini, T. J. Foster, P. Moriarty, A. Nogaret, P. Beton, L. Eaves and P. C. Main, Resonant magnetotunneling through individual self-assembled InAs quantum dots, Phys. Rev. B 54 (1996) 16401.

    Article  CAS  Google Scholar 

  12. M. Narihiro, G. Yusa, Y. Nakamura, T. Noda and H. Sakaki, Resonant tunneling of electrons via 20 nm scale InAs quantum dot and magnetotunneling spectroscopy of its electronic states, Appl. Phys. Leu. 70 (1996) 105.

    Article  Google Scholar 

  13. M. Borgstrom, T. Bryllert, T. Sass, B. Gustafson, L.-E. Wernersson, W. Seifert and L. Samuelson, High peak-to-valley ratios observed in InAs/InP resonant tunneling quantum dot stacks, Appl. Phys. Lett. 78 (2001) 3232.

    Article  CAS  Google Scholar 

  14. I. Shorubalko, H. Q. Xu, I. Maximov, P. Omling, L. Samuelson and W. Seifert, Nonlinear operation of GaInAs/InP-based three-terminal ballistic junctions, Appl. Phys. Leu. 79 (2001) 1384.

    Google Scholar 

  15. S. Reitzenstein, L. Worschech, P. Hartmann and A. Forschel, Logic AND/NAND gates based on three-terminal ballistic junction, Electronic Lett. 38 (2002) 951.

    Article  Google Scholar 

  16. C. Papadopoulos, A. Rakitin, J. Li, A. S. Vedeneev and J. M. Xu, Electronic transport in Y-junction carbon nanotubes, Phys. Rev. Lett. 85 (2000) 3476.

    Article  CAS  Google Scholar 

  17. M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore and A. E. Wetsel, Observation of Discrete Electronic States in Zero-Dimensional Semiconductor Nanostructure, Phys. Rev. Lett. 60 (1988) 535.

    Article  CAS  Google Scholar 

  18. S. Tarucha, Y. Hiarayama, T. Saku and T. Kimura, Resonant tunneling through one-and zero-dimensionalstates constricted by AlxGa1-xAs/GaAs/AlxGa1-xAs heterojunctions and high-resistance regions induced by focused Ga ion-beam implantation Phys. Rev. B 41 (1990) 5459.

    Article  CAS  Google Scholar 

  19. J. Wang, P. H. Beton, N. Mori, L. Eaves, H. Buhmann, L. Monsouri, P. C. Main, T. J. Foster and M. Henini, Resonant Magnetotunneling via One-Dimensional Quantum Confined States, Phys. Rev. Lett. 73 (1994) 1146.

    Google Scholar 

  20. For a review, see G. Bastard, J. A. Brum and R. Ferreira, in Solid State Physics,Vol. 44, Edited by H. Ehrenreich and D. Turnbull, Academic Press, Boston, (1991), p. 229.

    Google Scholar 

  21. C. R. Proetto, Self-consistent electronic structure of a cylindrical quantum wire, Phys. Rev. B 45 (1992) 11911.

    Article  CAS  Google Scholar 

  22. A. Gold and A. Ghazali, Analytical results for semiconductor quantum-well wire: Plasmons, shallow impurity states, and mobility. Phys. Rev. B 41 (1990) 7626.

    Article  Google Scholar 

  23. T. Ogawa and T. Takagahara, Optical absorption and Sommerfeld factors of one-dimensional semiconductors: An exact treatment of excitonic effects, Phys. Rev. B 44 (1991) 8138.

    Article  Google Scholar 

  24. Y. Arakawa and T. Yamauchi and J. N. Schulman, Tight-binding analysis of energy-band structures in quantum wires, Phys. Rev. B 43 (1991) 4732.

    Article  Google Scholar 

  25. Y. M. Niquet, C. Delerue, G. Allan and M. Lannoo, Method for tight-binding parametrization: Application to silicon nanostructures, Phys. Rev. B 62 (2000) 5109.

    Article  CAS  Google Scholar 

  26. M. P. Persson and H. Q. Xu, Electronic structure of nanometer-scale GaAs whiskers, Appl. Phys. Lett. 81 (2002) 1309.

    Article  Google Scholar 

  27. A. Franceschetti and A. Zunger, GaAs quantum structures: Comparison between direct pseudopotential and single-band truncated-crystal calculations, J. Chem. Phys. 104 (1996) 5572.

    Article  CAS  Google Scholar 

  28. A. Franceschetti and A. Zunger, Free-standing versus AlAs-embedded GaAs quantum dots, wires, and films: The emergence of a zero-confinement state, Appl. Phys. Lett. 68 (1996) 3455.

    Article  CAS  Google Scholar 

  29. D. W. Wood and A. Zunger, Successes and failures of the k•p method: A direct assessment for GaAs/AlAs quantum structures, Phys. Rev. B 53 (1996) 7949.

    Article  CAS  Google Scholar 

  30. J.-B. Xia and K. W. Cheah, Quantum confinement effect in thin quantum wires, Phys. Rev. B 55 (1997) 15688.

    Article  CAS  Google Scholar 

  31. R. S. Wagner, W. C. Ellis, Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. Lett. 4 (1964) 89.

    Article  CAS  Google Scholar 

  32. E. I. Givargizov, in Current Topics in Materials Science, Edited by E. Kaldis, North Holland, Amsterdam (1978), pp. 79–145.

    Google Scholar 

  33. M. H. Magnusson, K. Deppert, J.-O. Malm, J.-O. Bovin and L. Samuelson, Gold nanopartides: Production, reshaping, and thermal charging, J. Nanopart. Res. 1 (1999) 243.

    Article  CAS  Google Scholar 

  34. H. Wang and G. S. Fischman, Role of liquid droplet surface diffusion in the vapor-liquidsolid whisker growth mechanism, J. Appl. Phys. 76 (1994) 1557.

    Google Scholar 

  35. W. Dittmar and K. Neumann, in: Growth and Perfection of Crystals, Edited by R. H. Doremus et al. Wiley, New York (1958), p. 121.

    Google Scholar 

  36. J. M. Blakely, K. A. Jackson, Growth of crystal whiskers, J. Chem. Phys. 37 (1962) 428.

    Article  CAS  Google Scholar 

  37. K. Haraguchi, K. Hiruma, K. Hosomi, M. Shirai and T. Katsuyama, Growth mechanism of planar-type GaAs nanowhiskers, J. Vac. Sci. Technol. B 15 (1997) 1685.

    Google Scholar 

  38. J. Hu, T. W. Odom and C. M. Lieber, Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes, Acc. Chem. Res. 32 (1999) 435.

    Article  CAS  Google Scholar 

  39. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi and H. Kakibayashi, Growth and optical properties of nanometer-scale GaAs and InAs whiskers, J. Appl. Phys. 77 (1995) 447.

    Article  CAS  Google Scholar 

  40. X. F. Duan, J. F. Wang and C. M. Lieber, Synthesis and optical properties of gallium arsenide nanowires, Appl. Phys. Lett. 76 (2000) 1116.

    Google Scholar 

  41. B. J. Ohlsson, M. T. Björk, M. H. Magnusson, K. Deppert, L. R. Wallenberg and L. Samuelson, Size-, shape-, and position-controlled GaAs nano-whiskers, Appl. Phys. Lett. 79 (2001) 3335.

    Article  CAS  Google Scholar 

  42. CBE and Related Techniques, Edited by J. S. Foord, G. J. Davies and W. T. Tsang, Wiley, Chichester (1997), pp. 331–393.

    Google Scholar 

  43. M. T. Björk, B. J. Ohlsson, T. Sass, A. I. Persson, C. Thelander, M. H. Magnusson, K. Deppert, L. R. Wallenberg and L. Samuelson, One-Dimensional Heterostructures in Semiconductor Nanowhiskers, Appl. Phys. Lett. 80 (2002) 1058.

    Google Scholar 

  44. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi and H. Kakibayashi, Growth and optical properties of nanometer-scale GaAs and InAs whiskers, J. Appl. Phys. 77 (1995) 447.

    Article  CAS  Google Scholar 

  45. T. C. Shen, G. B. Gao, and H. Morkoç, Recent developments in ohmic contacts for III-V compound semiconductors, J. Vac. Sci. Technol. B 10 (1992) 2113 and references therein.

    Google Scholar 

  46. A. G. Baca, F. Ren, J. C. Zolper, R. D. Briggs and S. J. Pearton, A survey of ohmic contacts to III-V compound semiconductors, Thin Solid Films 308–309 (1997) 599 and references therein.

    Google Scholar 

  47. I. Maximov, A. A. Zakharov, T. Holmqvist, L. Montelius and I. Lindau, Investigation of polymethylmethacrylate resist residues using photoelectron microscopy,. 1. Vac. Sci. Technol. B 20 (2002) 1139.

    Google Scholar 

  48. W. M. Moreau, Semiconductor Lithography, Principles, practices, and materials, Plenum New York (1988), pp. 791–793.

    Book  Google Scholar 

  49. V. N. Bessolov and M. V. Lebedev, Chalcogenide passivation of III-V semiconductor surfaces, Semiconductors 32 (1998) 1141.

    Google Scholar 

  50. M. Kamp, R. Contini, K. Werner, H. Heinecke, M. Weyers, H. Lüth and P. Balk, Carbon incorporation in MOMBE-grown Ga047In0.53As, J. Cryst. Growth 95 (1989) 154.

    Article  CAS  Google Scholar 

  51. R. Martel, T. Schmidt. H. R. Shea, T. Hertel and Ph. Avouris, Single-and multi-wall carbon nanotubes field-effect transistors, Appl. Phys. Leu. 73 (1998) 2447.

    Google Scholar 

  52. S. M. Sze, Semiconductor Devices, Physics and Technology, Wiley, New York (1985), p. 206.

    Google Scholar 

  53. B. J. Ohlsson, M. T. Björk, A. I. Persson, C. Thelander, L. R. Wallenberg, M. H. Magnusson, K. Deppert and L. Samuelson, Growth and characterization of GaAs and InAs nano-whiskers and InAs/GaAs heterostructures, Physica E 13 (2002) 1126.

    Google Scholar 

  54. Y. Cui, X. Duan, J. Hu and C. M. Lieber, Doping and Electrical Transport in Silicon Nanowires, J. Phys. Chem. B 104 (2000) 5213.

    Article  CAS  Google Scholar 

  55. Physics of Group IV Elements and III-V Compounds, Vol. 17a, Edited by O. Madelung, M. Schulz, H. Weiss and Landholt-Börnstein, Springer, New York (1982), p. 302.

    Google Scholar 

  56. I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, Band paramters for III/V compound semiconductors and their alloys, J. Appl. Phys. 89 (2001) 5815.

    Article  CAS  Google Scholar 

  57. A. Imamoglu, Y. Yamamoto, Turnstile Device for Heralded Single Photons: Coulomb Blockade of Electron and Hole Tunneling in Quantum Confined p-i-n Heterojunctions, Phys. Rev. Lett. 72 (1994) 210.

    Article  CAS  Google Scholar 

  58. J. Kim, O. Benson, H. Kan, Y. Yamamoto, A single-photon turnstile device, Nature 397 (1999) 500.

    Article  CAS  Google Scholar 

  59. F. Capasso, C. Gmachl, D. L. Sivco, A. Y. Cho, Quantum Cascade Lasers, Physics Today, May (2002), p. 34.

    Google Scholar 

  60. J. Sadowski, K. Deppert, J. Kanski, J. Ohlsson, A. Persson, L. Samuelson, Migration Enhanced Epitaxial growth (In, Ga, Mn)As magnetic semiconductor nanowhiskers, Proceedings NANO-7/ECOSS-21, Sweden (2002).

    Google Scholar 

  61. L. Samuelson, J. Lindahl, L. Montelius, M.-E. Pistol, Tunnel-Induced Photon Emission in Semiconductors using an STM, Physica Scripta T42 (1992) 149.

    Article  Google Scholar 

  62. P. Vettiger et al., The “Millipede”— More than one thousand tips for future AFM data storage, IBM J. Res. Develop. 44 (2000) 323.

    Article  CAS  Google Scholar 

  63. More information on the development of these nanowire technologies, including IPRissues, is available via the web-pages of the Nanometer Consortium, http://www.nano.ftf.lth.se and QuMat Technologies AB, www.qumat.se.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Samuelson, L., Ohlsson, B.J., Björk, M.T., Xu, H. (2003). Epitaxial Quantum Wires: Growth, Properties and Applications. In: Wang, Z.L. (eds) Nanowires and Nanobelts. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-28745-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-28745-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28705-8

  • Online ISBN: 978-0-387-28745-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics