Skip to main content

Wide Band-Gap Semiconductor Nanowires Synthesized by Vapor Phase Growth

  • Chapter
Nanowires and Nanobelts
  • 415 Accesses

Abstract

With the rapid development of the contemporary sciences and technologies into nanoscale regime, one needs to synthesize nanostructured materials, to addresses their peculiar physical and chemical properties related to the lower dimensionality, and what is more important is to explore their possible applications. Among those nanostructures, functional nanowire materials have stimulated intensive research interests from fundamental research to application community. A variety of one-dimensional nanostructured materials, such as silicon, germanium [1–6], GaAs, InAs [7, 8], gallium nitride [9], have been prepared. Fig. 1 shows an example that very pure silicon nanowires can be synthesized via simple physical evaporation [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. P. Yu, C. S. Lee, I. Bello, N. Wang, X. S. Sun, Y. H. Tang, G. W. Zhou, Z. G. Bai and S. T. Lee, Solid State Communications 105 (1998) 403.

    Article  CAS  Google Scholar 

  2. M. Morales and C. M. Lieber, Science 279 (1998) 208.

    Article  CAS  Google Scholar 

  3. Westwater, J., Gosain, D. P., Tomiya, S., Usui, S. and Ruda, H., J. Vac. Sci. Technol. B 15 (1997) 554.

    Article  CAS  Google Scholar 

  4. D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang and S. Q. Feng, “Silicon Nano-wires synthesized using simple physical evaporation”, Appl. Phys. Letters 72 (1998) 3458.

    Article  CAS  Google Scholar 

  5. N. Wang, D. P. Yu, et al., “Transmission electron microscopy evidence of the defect structure in Si nanowires synthesised by laser ablation”, Chem. Phys. Letters 283 (1998) 368.

    Article  CAS  Google Scholar 

  6. Dai, H., Wong, E. W., Lu, Y. Z., Fan, S. and Lieber, C. M., Nature 375 (1995) 769.

    Article  CAS  Google Scholar 

  7. Hiruma, K., Katsuyama, T., Ogawa, K., Morgan, G. P., Koguchi, M. and Kakibayashi, H., Appl. Phys. Letters 59 (1991) 431.

    Article  CAS  Google Scholar 

  8. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi and H. Kakibayashi,. J. Appl. Phys. 77 (1995) 447.

    Article  CAS  Google Scholar 

  9. W. Q. Han, S. S. Fan, Q. Q. Li and Y. D. Hu, Science 277 (1997) 1287.

    Article  CAS  Google Scholar 

  10. Zhang, L. D. Zhang, X. E. Wang, C. H. Liang, X. S. Peng and Y. W. Wang, “Fabrication and photoluminescence of ordered GaN nanowire arrays”, J. Chem. Phys. 115 (2001) 5714.

    Article  CAS  Google Scholar 

  11. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo and F. Priolo, “Optical gain in silicon nanocrystals”, Nature 440 (2000) 408.

    Google Scholar 

  12. M. P. Zach, K. H. Ng and R. M. Penner, Science 290 (2000) 2120.

    Article  CAS  Google Scholar 

  13. D. K. Ferry and S. M. Goodnick, Transport in Nanodtructures, Cambridge University Press, 1997.

    Google Scholar 

  14. Y. Kanemitsu, Phys. Rev. B 48 (1993) 4883.

    Article  CAS  Google Scholar 

  15. Y. Makhlin, G. Schon and A. Shnirman, Reviews of Modern Physics 73 (2001) 357.

    Article  Google Scholar 

  16. A. G. Cullis and L. T. Canham, Nature 353 (1991) 335.

    Article  CAS  Google Scholar 

  17. J. T. Hu, M. Ouyang, P. Yang and C. M. Lieber, Nature 399 (1999) 48.

    Article  CAS  Google Scholar 

  18. X. F. Duan, Y. Huang, Y. Cui, J. F. Wang and C. M. Lieber, Nature 409 (2001) 66.

    Article  CAS  Google Scholar 

  19. C. M. Lieber, Solid State Communications 107 (1998) 607.

    Article  CAS  Google Scholar 

  20. T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, C. M. Lieber, Y. Cui and C. M. Lieber, Science 289 (2001) 94.

    Article  Google Scholar 

  21. M. Kociak, K. Suenaga, K. Hirahara, Y. Saito, T. Nakahira and S. Iijima, “Linking Chiral Indices and Transport Properties of Double-Walled Carbon Nanotubes”, Phys. Rev. Letters 89 (2002) 155501.

    Google Scholar 

  22. A. Tilke, R. H. Blick, H. Lorenz and J. P. Kotthaus, “Coulomb blockade in quasimetallic silicon-on-insulator nanowires”, Appl. Phys. Lett. 75 (1999) 3704.

    Article  CAS  Google Scholar 

  23. J. L. Costa-Kramer, N. Garcÿa, P. G. Mochales, P. A. Serena, M. I. Marques and A. Correia, “Conductance quantization in nanowires formed between micro and macroscopic metallic electrode”, Phys. Rev. B 55 (1997) 5416.

    Article  CAS  Google Scholar 

  24. M. H. Huang, S. Mao, H. Feick, H. Q. Ya, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, Science 292 (2001) 1897.

    Article  CAS  Google Scholar 

  25. H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang and S. Q. Feng, “Nano-scale Ga2O3 wires synthesized using physical evaporation”, Solid State Commun. 109 (1999) 677.

    Article  CAS  Google Scholar 

  26. C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng and Y. F. Chen, “Catalytic growth and characterization of gallium nitride nanowires”, J. Am. Chem. Soc. 123 (2001) 2791.

    Google Scholar 

  27. Y. C. Kong, D. P. Yu, B. Zhang, W. Fang and S. Q. Feng, “UV-emitting ZnO nanowires synthesized by a PVD approach”, Appl. Phys Lett. 78 (2001) 407.

    Article  CAS  Google Scholar 

  28. D. H. Cobden, “Nanowires begin to shine”, Nature 492 (2001) 32.

    Article  CAS  Google Scholar 

  29. Z. W. Pan, Z. R. Dai and Z. L. Wang, Science 291 (2001) 1947.

    Article  CAS  Google Scholar 

  30. Y. Li, G. S. Cheng and L. D. Zhang, “Fabrication of highly ordered ZnO nanowire arrays in anodic alumina membranes”, J. Mater. Res. 15 (2000) 2305.

    Google Scholar 

  31. Y. Li, G. W. Meng, L. D. Zhang and F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties”, Appl. Phys. Lett. 76 (2000) 2011.

    Google Scholar 

  32. X. F. Duan and C.M. Lieber, J. Am. Chem. Soc. 122 (2000) 188.

    Article  CAS  Google Scholar 

  33. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, Nature 391 (1998) 667.

    Article  CAS  Google Scholar 

  34. B. Zheng, Y. Wu, P. Yang and J. Liu, Adv. Mater. 14 (2002) 122.

    Article  Google Scholar 

  35. E. Betzig and K. Trautman, Science 257 (1992) 189.

    Article  CAS  Google Scholar 

  36. A. P. Levitt, Whisker Technology, John Wiley & Sons, Inc. (1970) 25.

    Google Scholar 

  37. F. C. Frank, Discussions Faraday Soc. 5 (1949) 48.

    Article  Google Scholar 

  38. G. W. Sears, Acta Met. 1 (1953) 367;

    Article  Google Scholar 

  39. G. W. Sears, Acta Met. 3 (1955) 457.

    Google Scholar 

  40. Melmed, A. J. and Gomer, R., J. Phys. Chem. 34 (1961) 1802.

    Article  CAS  Google Scholar 

  41. R. S. Wagner and W. C. Ellis, Appl. Phys. Letters 4 (1964) 8.

    Article  Google Scholar 

  42. E. I. Givargizov, J. of Crystal Growth 20 (1973) 217.

    Article  CAS  Google Scholar 

  43. S. T. Lee, N. Wang, Y. F. Zhang and Y. H. Tang, Mater. Res. Soc. Bull. 24 (1999) 36.

    CAS  Google Scholar 

  44. T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons and W. E. Buhro, Science 270 (1995) 1791.

    Article  CAS  Google Scholar 

  45. S. Geller, J. Chem. Phys. 33 (1960) 676.

    Article  CAS  Google Scholar 

  46. T. Sasaki and K. Hijikata, Proc. Inst. Nat. Sci. Nibon Univ. 9 (1974) 29.

    Google Scholar 

  47. T. Harwig and J. Schoonman, J. Solid. State Chem. 23 (1978) 205.

    Article  CAS  Google Scholar 

  48. G. S. Park, W. B. Choi, J. M. Kim, et al., “Structural investigation of gallium oxide (betaGa2O3) nanowires grown by arc-discharge”, J. Cryst. Growth 220 (2000) 494.

    Article  CAS  Google Scholar 

  49. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee and J. M. Kim, “Catalytic growth of beta-Ga2O3 nanowires by arc discharge”, Adv. Mater. 12 (2000) 746.

    Article  CAS  Google Scholar 

  50. J. Y. Li, X. L. Chen, G. Zhang and J. Lee, “Synthesis and structure of Ga2O3 nanosheets”, Mod. Phys. Lett. B 16 (2002) 409.

    Article  CAS  Google Scholar 

  51. G. R. Patzke, F. Krumeich and R. Nesper, “Oxidic nanotubes and nanorods-Anisotropic modules for a future nanotechnology”, Angew Chem Int Edit 41 (2002) 2446.

    Google Scholar 

  52. G. Gundiah, A. Govindaraj and C. N. R. Rao, “Nanowires, nanobelts and related nanostructures of Ga2O3”, Chem. Phys. Lett. 351 (2002) 189.

    Article  CAS  Google Scholar 

  53. C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang and S. Y. Zhang, “Catalytic synthesis and photoluminescence of beta-Ga2O3 nanowires”, Appl. Phys. Lett. 78 (2001) 3202.

    Article  CAS  Google Scholar 

  54. Z. R. Dai, Z. W. Pan and Z. L. Wang, “Gallium Oxide Nanoribbons and Nanosheets”, J. Phys. Chem. B. 106 (2002) 902.

    Article  CAS  Google Scholar 

  55. S. Iijima, Jpn. J. Appl. Phys. 26 (1987) 357.

    Article  CAS  Google Scholar 

  56. G. W. Zhou, H. Li, H. P. Sun, D. P. Yu, Y. Q. Wang, L. Q. Chen and Ze Zhang, “Controlled Li-doping of Si nanowires by electrochemical insertion method”, Appl. Phys. Lett. 73 (1998) 677.

    Article  CAS  Google Scholar 

  57. Y. Wang, D. P. Yu et al., to be published, 2002.

    Google Scholar 

  58. J. Xiang, D. P. Yu et al., unpublished results, 2002.

    Google Scholar 

  59. D. Pastré, M. Troyon, T. Duvaut and J. L. Beaudoin, Surf. Interface Anal. 27 (1999) 495.

    Article  Google Scholar 

  60. M. Troyon, D. Pastré, J. P. Jouart and J. L. Beaudoin, Ultramicroscopy 75 (1998) 15.

    Article  CAS  Google Scholar 

  61. D. P. Yu, J-L. Bubendorff, J. F. Zhou, Y. Leprince-Wang and M. Troyon, Solid State Communications 124 (2002) 417.

    Article  CAS  Google Scholar 

  62. T. Harwig, F. Kellendonk and S. Slappendel, J. Phys. Chem. Solids 39 (1978) 675.

    Article  CAS  Google Scholar 

  63. L. Binet and D. Gourier, J. Phys. Chem Solids 59 (1998) 1241.

    Article  CAS  Google Scholar 

  64. L. Binet and D. Gourier, Appl. Phys. Letters 77 (2000) 1138.

    Article  CAS  Google Scholar 

  65. X. C. Wu, W. H. Song, W. D. Huang, M. H. Pu, B. Zhao, Y. P. Sun and J. J. Du, Chem. Phys. Letters 328 (2000) 468.

    Article  Google Scholar 

  66. C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang and L. D. Zhang, Appl. Phys. Lett 78 (2001) 3202.

    Article  CAS  Google Scholar 

  67. E. G. Villora, T. Atou, T. Sekiguchi, T. Sugawara, M. Kikuchi and T. Fukuda, Solid State Communications 120 (2001) 455.

    Article  CAS  Google Scholar 

  68. M. Le Blanc and H. Sachse, Physik. Z. 32 (1931) 88.

    Google Scholar 

  69. M. R. Lorentz, J. A. Woods and R. J. Gambino; J. Physic. Chem. Solids 28 (1967) 403.

    Article  Google Scholar 

  70. M. Fleischer and H. Meixner, Sensors and Actuators B 4 (1991) 437.

    Article  CAS  Google Scholar 

  71. M. Fleischer and H. Meixner, Sensors and Actuators B 6 (1992) 257.

    Article  CAS  Google Scholar 

  72. M. Fleischer and H. Meixner, J. Vac. Sci. Technol. A 17 (1999) 1866.

    Article  CAS  Google Scholar 

  73. M. Fleischer and H. Meixner, J. Appl. Phys. 74 (1993) 300.

    Article  CAS  Google Scholar 

  74. D. M. Bagnall et al, Appl. Phys. Lett. 70 (1997) 2230.

    Article  CAS  Google Scholar 

  75. R. F. Service, Science 276 (1997) 895.

    Article  CAS  Google Scholar 

  76. H. Cao, J. Y. Xu, D. Z. Zhang and C. Q. Cao, “Spatial confinement of laser light in active random media”, Phys. Rev. Lett. 84 (2000) 5584.

    Article  CAS  Google Scholar 

  77. M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber and P. D. Yang, Adv. Mater. 13 (2001) 113.

    Article  CAS  Google Scholar 

  78. C. C. Chen and C. C. Yeh, Adv. Mater. 12 (2000) 738.

    Article  CAS  Google Scholar 

  79. X. L. Chen, J. Y. Li, Y. G. Cao, Y. C. Lan, H. Li, M. He, C. Y. Wang, Z. Zhang and Z. Y. Qiao, Adv. Mater. 19 (2000) 1432.

    Article  Google Scholar 

  80. Y. J. Xing, Z. H. Xi, D. P. Yu, Z. Q. Xue et al., to be published, 2003; Y. Zhang, H. B. Jia et al., to be published, 2003.

    Google Scholar 

  81. X. C. Sun, H. Z. Zhang, J. Xu, Q. Z., B. Xiang, S. Q. Feng, R. M. Wang and D. P. Yu, to be published, 2003.

    Google Scholar 

  82. Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang and D. P. Yu, Appl. Phys. Letters, accepted, 2003.

    Google Scholar 

  83. J. Y. Lao, J. G. Wen and Z. F. Ren, Nano Letters 2 (2002) 1287.

    Article  CAS  Google Scholar 

  84. S. C. Lyu, Y. Zhang, H. R. Lee, H. W. Shim, E. K. Suh and C. J. Lee, Chem. Phys. Lett. 363 (2002) 134.

    Article  CAS  Google Scholar 

  85. Y. C. Kong, H. Z. Zhang and D. P. Yu, unpublished 1999.

    Google Scholar 

  86. Y. J. Xing et al., Appl. Phys. Letters, to be published, 2003; Y. J. Xing, D. P. Yu, to be published, 2003.

    Google Scholar 

  87. J. J. Wu, S. C. Liu, C. T. Wu and K. H. Chen, L. C. Chen, “Heterostructures of ZnO-Zn coaxial nanocables and ZnO nanotubes”, Appl. Phys. Letters 81 (2002) 1312.

    Google Scholar 

  88. T. Y. Tsai and M. Birnbaum, J. Appl. Phys. 87 (2000) 25.

    Article  CAS  Google Scholar 

  89. H. Ishikura, T. Abe, N. Fukuda, H. Kasada and K. Ando, Appl. Phys. Lett. 76 (2000) 1069.

    Article  CAS  Google Scholar 

  90. K. Katayama, H. Yao, F. Nakanishi, H. Doi, A. Saegusa, N. Okuda and T. Yamada, Appl. Phys. Lett. 73 (1998) 102.

    Article  CAS  Google Scholar 

  91. M. Kuhnelt, T. Leichtner, S. Kaiser, B. Hahn, H. P. Wagner, D. Eisert, G. Bacher and A. Forchel, Appl. Phys. Lett. 73 (1998) 584.

    Article  CAS  Google Scholar 

  92. Z. H. Ma, W. D. Sun and G. K. L. Wong, Appl. Phys. Lett. 73 (1998) 1340.

    Article  CAS  Google Scholar 

  93. D. Sarigiannis, J. D. Peck, G. Kioseoglou, A. Petrou and T. J. Mountziaris, Appl. Phys. Lett. 80 (2002) 4024.

    Article  CAS  Google Scholar 

  94. T. Tawara, S. Tanaka, H. Kumano and I. Suemune, Appl. Phys. Lett. 75 (1999) 235.

    Article  CAS  Google Scholar 

  95. H. Tho, H. E. Jackson, S. Lee, M. Dobrowolska and J. K. Furdyna, Phys. Rev. B 61 (2000) 15641.

    Article  Google Scholar 

  96. C. A. Smith, H. W. H. Lee, V. J. Leppert and S. H. Risbud, Appl. Phys. Lett. 75 (1999) 1688.

    Article  CAS  Google Scholar 

  97. O. Ray, A. A. Sirenko, J. J. Berry, N. Samarth, J. A. Gupta, I. Malajovich and D. D. Awschalom, Appl. Phys. Lett. 76 (2000) 1167.

    Article  CAS  Google Scholar 

  98. H. P. Wagner, H. P. Tranitz, R. Schuster, G. Bacher and A. Forchel, Phys. Rev. B 63 (2001) 155311.

    Google Scholar 

  99. X. F. Duan, Y. Huang and C. M. Lieber, Nano Lett. 2 (2002) 487.

    Article  CAS  Google Scholar 

  100. W. Z. Wang, Y. Geng, P. Yan, F. Y. Liu, Y. Xie and Y. T. Qian, Inorg. Chem. Commun. 2 (1999) 83.

    Article  CAS  Google Scholar 

  101. X. F. Duan and C. M. Lieber, Adv. Mater 12 (2000) 298.

    Article  CAS  Google Scholar 

  102. R. Solanki, J. Huo, J. L. Freeouf and B. Miner, Appl. Phys. Lett. 81 (2002) 3864.

    Article  CAS  Google Scholar 

  103. B. Xiang, H. Z. Zhang, G. H. Li, R. M. Wang, J. Xu, G. W. Lu, X. C. Sun, Q. Zhao and D. P. Yu, Appl. Phys. Letters 82 (2003) 3330.

    Article  CAS  Google Scholar 

  104. L. Malikova, W. Krystek, F. H. Pollak, N. Dai, A. Cavus and M. c. Tamargo, Phys. Rev. B 54 (1996) 1819.

    Article  CAS  Google Scholar 

  105. P. J. Dean, B. J. Fitzpatrick and R. N. Bhargava, Phys. Rev. B 26 (1982) 2016.

    Article  CAS  Google Scholar 

  106. M. Godlewski, E. M. Goldys, M. R. Phillips, R. Langer and A. Barski, Appl. Phys. Lett. 73 (1998) 3686.

    Article  CAS  Google Scholar 

  107. R. Konenkamp, K. Boedecker, M. C. Lux-Steiner, M. Poschenrieder, F. Zenia, C. L. Clement and S. Wagner, Appl. Phys. Lett. 77 (2000) 2575.

    Article  CAS  Google Scholar 

  108. Y. Li, G. W. Meng, L. D. Zhang and F. Phillipp, Appl. Phys. Lett. 76 (2000) 2011.

    Article  CAS  Google Scholar 

  109. Y. W. Wang, L. D. Zhang, G. Z. Wang, et al., “Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties”, J. Cryst. Growth 234 (2002) 171.

    Article  CAS  Google Scholar 

  110. Y. C. Wang, I. C. Leu and M. H. Hon, “Effect of colloid characteristics on the fabrication of ZnO nanowire arrays by electrophoretic deposition”, J.Mater. Chem. 12 (2002) 2439.

    Google Scholar 

  111. B. D. Yao, Y. F. Chan and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation”, Appl. Phys. Lett. 81 (2002) 757.

    Article  CAS  Google Scholar 

  112. Y. Y. Wu, H. Q. Yan and P. D. Yang, “Semiconductor nanowire array: potential substrates for photocatalysis and photovoltaics”, Top Catal. 19 (2002) 197.

    Article  CAS  Google Scholar 

  113. P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He and H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties”, Adv. Funct. Mater. 12 (2002) 323.

    Article  CAS  Google Scholar 

  114. J. C. Johnson, H. Q. Yan and R. D. Schaller, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires”, Nano Letters 2 (2002) 279.

    Article  CAS  Google Scholar 

  115. Y. Y. Wu, H. Q. Yan, Huang M, B. Messer, J. H. Song and P. D. Yang “Inorganic semiconductor nanowires: Rational growth, assembly and novel properties”, Chem-Eur. J. 8 (2002) 1261.

    Google Scholar 

  116. Z. X. Zheng, Y. Y. Xi, Dong P, H. G. Huang, J. Z. Zhou, L. L. Wu and Z. H. Lin, “The enhanced photoluminescence of zinc oxide and polyaniline coaxial nanowire arrays in anodic oxide aluminium membranes”, Phys. Chem. Comm. 9 (2002) 63.

    Google Scholar 

  117. H. Kind, H. Q. Y an, B. Messer, M. Law and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches”, Adv. Mater. 14 (2002) 158.

    Article  CAS  Google Scholar 

  118. J. Wallace, “Single ZnO nanowires lase”, Laser Focus World 38 (2002) 15.

    Google Scholar 

  119. S. Nakamura, Science 281 (1998) 956.

    Article  CAS  Google Scholar 

  120. X. L. Chen, J. Y. Li, Y. G. Cao, Y. C. Lan, H. Li, M. He, C. Y. Wang, Z. Zhang and Z. Y. Qiao, Adv. Mater. 19 (2000) 1432.

    Google Scholar 

  121. C. C. Chen and C. C. Yeh, Adv. Mater. 12 (2000) 738.

    Article  CAS  Google Scholar 

  122. H. Y. Peng, X. T. Zhou, N. Wang, Y. F. Zheng, L. S. Liao, W. S. Shi, C. S. Lee, S. T. Lee, Chem. Phy. Letters 32 (2000) 263.

    Article  Google Scholar 

  123. G. S. Cheng, L. D. Zhang, Y. Zhu, et al., “Large-scale synthesis of single crystalline gallium nitride nanowires”, Appl. Phys. Lett. 75 (1999) 2455.

    Google Scholar 

  124. X. F. Duan and C. M. Lieber, J. Am. Chem. Soc. 122 (2000) 188.

    Article  CAS  Google Scholar 

  125. X. H. Chen, R. M. Wang, J. Xu and D. P. Yu, Advanced Materials 15 (2003) 419.

    Article  CAS  Google Scholar 

  126. F. L. Deepak, A. Govindaraj and C. N. R. Rao, “Single crystal GaN nanowires”, J Nanosci. & Nanotechno. 1 (2001) 303.

    Article  CAS  Google Scholar 

  127. J. Y. Li, X. L. Chen, Z. Y. Qiao, Y. G. Cao and H. Li, Synthesis of GaN nanotubes“, J. Mater. Sci. Lett. 20 (2001) 1987.

    Google Scholar 

  128. M. W. Lee, H. Z. Twu, C. C. Chen and C. H. Chen, “Optical characterization of wurtzite gallium nitride nanowires”, Appl. Phys. Lett. 79 (2001) 3693.

    Article  CAS  Google Scholar 

  129. Zhang, X. S. Peng, X. F Wang, Y. W. Wang and L. D. Zhang, “Micro-Raman investigation of GaN nanowires prepared by direct reaction Ga with NH3”, Chem. Phys. Lett. 345 (2001) 372.

    Article  CAS  Google Scholar 

  130. W. S. Shi, Y. F. Zheng, Wang N, C. S. Lee and S. T. Lee, “Microstructures of gallium nitride nanowires synthesized by oxide-assisted method”, Chem. Phys. Lett. 345 (2001) 377.

    Article  CAS  Google Scholar 

  131. C. C. Chen, C. C. Yeh, C. H. Liang, C. C. Lee, C. H. Chen, M. Y. Yu, H. L. Liu, L. C. Chen, Y. S. Lin, K. J. Ma and K. H. Chen, “Preparation and characterization of carbon nanotubes encapsulated GaN nanowires”, J. Phys. Chem. Solids 62 (2001) 1577.

    Google Scholar 

  132. M. Q. He, P. Z. Zhou, S. N. Mohammad, G. L. Harris, J. B. Halpern, R. Jacobs, W. L. Sarney and L. Salamanca-Riba, “Growth of GaN nanowires by direct reaction of Ga with NH3”, J. Cryst. Growth 231 (2001) 357.

    Article  CAS  Google Scholar 

  133. Z. J. Li, X. L. Chen, H. J. Li, Q.Y. Tu, Z. Yang, Y. P. Xu and B. Q. Hu, “Synthesis and Raman scattering of GaN nanorings, nanoribbons and nanowires”, Appl. Phys. A-Mater. 72 (2001) 629.

    Article  CAS  Google Scholar 

  134. K. W. Chang and J. J. Wu, “Low-temperature catalytic synthesis gallium nitride nanowires”, J. Phys. Chem. B 106 (2002) 7796.

    Article  CAS  Google Scholar 

  135. H. M. Kim, D. S. Kim and Y. S. Park, “Growth of GaN nanorods by a hydride vapor phase epitaxy method”, Adv. Mater. 14 (2002) 991.

    CAS  Google Scholar 

  136. H. Y. Peng, N. Wang and X. T. Zhou, “Control of growth orientation of GaN nanowires”, Chem. Phys. Lett. 359 (2002) 241.

    Article  CAS  Google Scholar 

  137. H. W. Seo, S. Y. Bae and Park J, “Strained gallium nitride nanowires”, J. Chem. Phys. 11 (2002) 9492.

    Article  CAS  Google Scholar 

  138. J. R. Kim, H. M. So and J. W. Park, “Electrical transport properties of individual gallium nitride nanowires synthesized by chemical-vapor-deposition”, Appl. Phys. Lett. 80 (2002) 3548.

    Article  CAS  Google Scholar 

  139. H. Li, J. Y. Li, M. He et al., “Fabrication of bamboo-shaped GaN nanorods”, Appl. Phys. A-Mater 74 (2002) 561.

    Article  CAS  Google Scholar 

  140. L. X. Zhao, G. W. Meng, X. S. Peng, X. Y. Zhang and L. D. Zhang, “Large-scale synthesis of GaN nanorods and their photoluminescence”, Appl. Phys. A-Mater 74 (2002) 587.

    Article  CAS  Google Scholar 

  141. L. X. Zhao, G. W. Meng, X. S. Peng, X. Y. Zhang and L. D. Zhang, “Synthesis, Raman scattering and infrared spectra of large-scale GaN nanorods”, J. Cryst. Growth 235 (2002) 124.

    Article  CAS  Google Scholar 

  142. J. Goldberger, R. R. He, Y. F. Zhang, S. Lee, H. Q. Yan, Heon-Jin Choi and P. Yang, Single-crystal gallium nitride nanotubes, Nature 422 (2003) 599.

    Article  CAS  Google Scholar 

  143. D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong and S. Q. Feng, “Amorphous silica nano wires: Intensive blue light emitters”, Appl. Phys. Letters 73 (1998) 3076.

    Google Scholar 

  144. Z. W. Pan, Z. R. Dai, C. Ma and Z. L. Wang, J.A.C.S. 124 (2002) 1817.

    Article  CAS  Google Scholar 

  145. B. Zheng, Y. Wu, P. Yang and J. Liu, Adv. Mater. 14 (2002) 122.

    Article  Google Scholar 

  146. D. P. Yu et al., unpublished results, 2001.

    Google Scholar 

  147. X. H. Chen D. P. Yu et al., Chemical Physics Letters, accepted, 2003.

    Google Scholar 

  148. Y.J. Xing, D. P. Yu, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi and S. Q. Feng, Materials Research Society Symposium—Proceedings 581 (1999) 231.

    Article  Google Scholar 

  149. D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi and S. Q. Feng, Physica E 9 (2001) 305.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yu, D.P. (2003). Wide Band-Gap Semiconductor Nanowires Synthesized by Vapor Phase Growth. In: Wang, Z.L. (eds) Nanowires and Nanobelts. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-28745-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-28745-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28705-8

  • Online ISBN: 978-0-387-28745-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics