Skip to main content

Optical Communications in the mid-wave IR spectral band

  • Chapter

Part of the Optical and Fiber Communications Reports book series (OFCR,volume 2)

Abstract

The mid-wave IR (MWIR) spectral band extending from 3 to 5 microns is considered to be a low loss atmospheric window. The MWIR wavelengths are eye safe and are attractive for several free-space applications including remote sensing of chemical and biological species, hard target imaging, range finding, target illumination, and free-space Communications. Due to the nature of light-matter interaction characteristics, MWIR wavelength based Systems can provide unique advantages over other spectral bands for these applications, The MWIR wavelengths are found to effectively penetrate natural and anthropogenic obscurants. Consequently, MWIR Systems offer increased range Performance at reduced power levels. Free-space, line-of-sight optical communication links for terrestrial as well as space based platforms using MWIR wavelengths can be designed to operate under low visibility conditions. Combined with high-bandwidth, eye-safe, covert and jam proof features, a MWIR wavelength based optical communication link could play a vital role in hostile environments.

A free-space optical communication link basically consists of a transmitter, a receiver and a scheme for directing the beam towards a target. Coherent radiation in the MWIR spectral band can be generated using various types of lasers and nonlinear optical devices. Traditional modulation techniques are applicable to these optical sources. Novel detector and other subcomponent technologies with enhanced characteristics for a MWIR based System are advancing. Depending on the transmitter beam characteristics, atmospheric conditions may adversely influence the beam propagation and thereby increasing the bit error rate. For satisfactory transmission over a given range, the influence of atmosphere on beam propagation has to be analyzed. In this chapter, salient features of atmospheric modeling required for wavelength selection and Performance prediction is presented. Potential optical sources and detectors for building a practical MWIR communication link are surveyed. As an illustration, the design configuration and experimental results of a recently demonstrated free-space, obscurant penetrating optical data communication link suitable for battlefield applications is discussed. In this case, the MWIR wavelength was derived using an all solid-state, compact, optical parametric oscillator device. With this device, weapon codes pertaining to small and large weapon platforms were transmitted over a range of 5 km. Furthermore, image transmission through light fog, accomplished using this hardware, is also presented.

Advances in source and detector technologies are contributing to the development of cost effective Systems compatible with various platforms requirements. In Coming years, MWIR wavelengths are anticipated to play a vital role in various human endeavors.

Keywords

  • Optical Parametric Oscillator
  • Quantum Cascade Laser
  • Scintillation Index
  • Periodically Pole Lithium Niobate
  • Atmospheric Transmission

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.E. Thomas, D.D. Duncan, Atmospheric transmission, in Atmospheric Propagation of Radiation, vol. 2 of The Infrared & Electro-Optical Systems Handbook, edited by F. G. Smith, pp. 1–156, 1993.

    Google Scholar 

  2. L. Andrews, R. Phillips, Laser Beam Propagation through Random Media (SPIE Optical Engineering Press, Bellingham, WA, 1998).

    Google Scholar 

  3. L. Andrews et. al., Laser beam scintillation with applications (SPIE Optical Engineering Press, Bellingham, WA, 2001).

    CrossRef  Google Scholar 

  4. J. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

    Google Scholar 

  5. W. Coles et al., Simulation of wave propagation in three-dimensional random media, Appl. Opt., 34(12), 2089–2101 (1995).

    CrossRef  ADS  Google Scholar 

  6. R. Frehlich, Simulation of laser propagation in a turbulent atmosphere, Appl. Opt., 39(3), 393–397 (2000).

    CrossRef  ADS  Google Scholar 

  7. American National Standards for Safe Use of Lasers, ANSI ZI36.1-2000, published by American National Standards Institute, New York, 2000.

    Google Scholar 

  8. M. Tacke, New developments and applications of tunable IR lead salt lasers, Infrared Phys. Technol., 36, 447–463 (1995).

    CrossRef  ADS  Google Scholar 

  9. J. Hecht, The Laser Handbook (McGraw-Hill, New York, 1992).

    Google Scholar 

  10. Improved lead-salt lasers set power record, in Laser Focus World, vol. 33, p. 9, January 1997.

    Google Scholar 

  11. H.K. Choi, G.W. Turner, H.Q. Le, InAsSb/InAlAs strained quantum-well lasers emitting at 4.5 µm, Appl. Phys. Lett., 66, 3543–3545 (1995).

    CrossRef  ADS  Google Scholar 

  12. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Quantum cascade laser, Science, 264, 553–556 (1994).

    CrossRef  ADS  Google Scholar 

  13. J. Faist, F. Capasso, C. Sirtori, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, S.N.G. Chu, A.Y. Cho, High power mid-infrared (λ ∼ 5 µm) quantum cascade lasers operating above room temperature, Appl. Phys. Lett., 68, 3680–3682 (1996).

    CrossRef  ADS  Google Scholar 

  14. J.F. Pinto, G.H. Rosenblatt, L. Esterowitz, Continuous-wave laser action in Er3+:YLF at 3.41 µm, Electron. Lett., 30, 1596–1598 (1994).

    CrossRef  Google Scholar 

  15. H. Többen, Room temperature cw fibre laser at 3.5µm in Er3+-doped ZBLAN glass, Electron. Lett., 28, 1361–1362 (1992).

    CrossRef  Google Scholar 

  16. J. Schneider, C. Carbonnier, U.B. Unrau, Continuous wave über laser Operation at a wave-length of 3.9 micrometers, OS A TOPS on Advanced Solid-State Lasers, 1, 333–334 (1996).

    Google Scholar 

  17. R.C. Eckardt, L. Esterowitz, I. D. Abella, Multiwavelength mid-IR laser emission in Ho: YLF, paper FM5, Digest for Conference on Lasers and Electro-Optics, p. 160, 1982.

    Google Scholar 

  18. R.L. Byer, Optical parametric oscillators, in Quantum Electronics: A Treatise, edited by H. Rabin and C.L. Tang, pp. 587–701, 1975.

    Google Scholar 

  19. A. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley & Sons, New York, 1984).

    Google Scholar 

  20. V.G. Dmitriev et. al., Handbook of Nonlinear Optical Crystals (Springer-Verlag, New York, 1991).

    Google Scholar 

  21. W.R. Bosenberg, A. Drobshoff, J.I. Alexander, L.E. Myers, R. L. Byer, Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3, Opt. Lett., 21,713–715(1996).

    CrossRef  ADS  Google Scholar 

  22. M. Scheidt, B. Beier, R. Knappe, K.-J. Boller, R. Wallenstein, Diode-laser-pumped continuous-wave KTP optical parametric oscillator, J. Opt. Soc. Am. B, 12, 2087–2094 (1995).

    CrossRef  ADS  Google Scholar 

  23. H. Komine, J.M. Fukumoto, W.H. Long, Jr., E.A. Stappaerts, Noncritically phase matched mid-infrared generation in AgGaSe2, IEEE J. Select. Top. Quantum Electron., 1, 44–49 (1995).

    CrossRef  Google Scholar 

  24. L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, J.W. Pierce, Quasi-phase-matched optical parametric oscillators in periodically poled LiNbO3, J. Opt. Soc. Am. B,. 12, 2102–2116 (1995).

    CrossRef  ADS  Google Scholar 

  25. L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, W.R. Bosenberg, Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3, Opt. Lett., 21, 591–593(1996).

    CrossRef  ADS  Google Scholar 

  26. R. Lavi, A. Englander, R. Lallouz, Highly efficient low-threshold tunable all-solid-state intracavity optical parametric oscillator in the mid infrared, Opt. Lett., 21, 800–802 (1996).

    CrossRef  ADS  Google Scholar 

  27. H. Piaessmann, A. Drobshoff, W.R. Bosenberg, Long-pulse, amplitude-modulated optical parametric oscillator, Appl. Opt., 35, 5964–5966 (1996).

    CrossRef  ADS  Google Scholar 

  28. M. Scheidt, B. Beier, R. Knappe, K.-J. Boller, R. Wallenstein, Diode-laser-pumpedcontinuouswave KTP optical parametric oscillator, J. Opt. Soc. Am. B, 12, 2087–2094 (1995).

    CrossRef  ADS  Google Scholar 

  29. A.R. Geiger, H. Hemmati, W.H. Farr, N.S. Prasad, A Directly Diode Pumped Optical Parametric Oscillator, Opt. Lett., 21, 3 (1996).

    CrossRef  Google Scholar 

  30. W. Koechner, Solid-state Laser Engineering, 4th ed. (Springer, New York, 1996).

    Google Scholar 

  31. Selected papers on Optical Parametric Oscillators and Amplifiers and Their Applications, edited by Jeffrey H. Hunt, SPIE Milestone Series, Vol. MS 140, Bellingham, WA, 1997.

    Google Scholar 

  32. SNLO nonlinear optics code available from A.V Smith Sandia National Laboratories, Al-buquerque, NM 87185-1423.

    Google Scholar 

  33. S.L. Brosnan and R.L. Byer, Optical parametric oscillator threshold and linewidth studies, IEEE J. Quantum Electron., QE-15, 415–431 (1979).

    CrossRef  ADS  Google Scholar 

  34. S.D. Boyd and D.A. Kleiman, Parametric interaction of focused Gaussian Light beams, J. Appl. Phys., 19(8), 3597–3639 (1968).

    CrossRef  ADS  Google Scholar 

  35. S. Guha et.al., The effects of focusing on Parametric Oscillation, IEEE J. Quantum Electron., QE-18(5), 907–912 (1982).

    CrossRef  ADS  Google Scholar 

  36. K. Kaufmann, Detectors cover the spectrum of instrument applications, in Laser Focus World, vol. 30, pp. 99–105, 1994.

    Google Scholar 

  37. Eltec Instruments, Inc., Passive Infrared Technology, High Megohm Resistors, Hybrid Electronics Product Catalog, Daytona Beach, FL.

    Google Scholar 

  38. Hamamatsu Corp., Optosemiconductors Condensed Catalog, Bridgewater, NJ.

    Google Scholar 

  39. J. Piotrowski, W. Gawron, Z. Djuric, New generation of near-room-temperature photode-tectors, Opt. Eng., 33, 1413–1421 (1994).

    CrossRef  ADS  Google Scholar 

  40. S. Blaser, D. Hofstetter, M. Beck, J. Faist, Free-space optical data link using Peltier-cooled quantum cascade laser, Electron. Lett., 37, 12 (2001).

    CrossRef  Google Scholar 

  41. Eye-Safe Multiple Integrated Laser Engagement System, Phase I Final Report CTI-TR-9708.

    Google Scholar 

  42. All Solid-State Mid-Wave Infrared Multiple Integrated Laser Engagement System (MILES), Phase II Final report CTI-TR-2001-27.

    Google Scholar 

  43. Narasimha S. Prasad, Duane D. Smith, James R. Magee, Data communication in mid-IR using a solid-state laser-pumped optical parametric oscillator, Proc. SPIE, 4821, 214–224 (Dec. 2002).

    CrossRef  Google Scholar 

  44. Quantitative Description of Obscuration Factors for Electro-Optical and Millimeter Wave Systems, DoD-HDBK-178 (ER), 1986.

    Google Scholar 

  45. Narasimha S. Prasad, Pat Kratovil, James R. Magee, Image transmission in mid-IR using a solid-state laser pumped optical parametric oscillator, Proc. SPIE, 4635, 272–277 (April 2002).

    CrossRef  ADS  Google Scholar 

  46. R.M. Measures, Lasing Remote Sensing (John Wiley & Sons, New York, 1984).

    Google Scholar 

  47. Narasimha S. Prasad, Allen R. Geiger, Remote Sensing of Propane and Methane Using a Differential Absorption Lidar by topographic reflection, Opt. Eng., 35, 4 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer Science + Business Media Inc.

About this chapter

Cite this chapter

Prasad, N.S. (2005). Optical Communications in the mid-wave IR spectral band. In: Free-Space Laser Communications. Optical and Fiber Communications Reports, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-28677-8_8

Download citation