Skip to main content

Free-space laser communication performance in the atmospheric channel

  • Chapter
Free-Space Laser Communications

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 2))

Abstract

In spite of the tremendous technical advancement of available components, the major limitation of free-space laser communication (lasercom) performance is due to the atmosphere, because a portion of the atmospheric path always includes turbulence and multiple scattering effects. Starting from a fundamental understanding of the laser communications system under diverse weather conditions, this chapter provides a comprehensive treatment of the evaluation of parameters needed for analyzing system performance. The significance of higher-order statistics of probability density functions of irradiance fluctuations due to turbulence to performance analysis is explained. Starting from link analysis, the necessary expressions relating link margin, bit-error-rate, signal-to-noise-ratio, and probability of fade statistics are presented. Results for laboratory-simulated atmospheric turbulence and multiple scattering are presented. Example numerical results for simulations of lasercom systems operating under various at mospheric conditions are presented for various scenarios such as uplink-downlink (e.g., between ground and satellite, aircraft or UAV) and horizontal (terrestrial) link. Both turbulence and multiple scattering effects have been included in the analysis with both on-off keying and pulse-position modulation schemes. Statistical estimation and computation of communication parameters presented in this chapter will be useful in designing and optimizing lasercom systems that are reliable under all weather conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.K. Killinger, J.H. Churnside, and L.S. Rothman, Atmospheric Optics, OSA Handbook of Optics, edited by M. Bass (1995), Chapter 44.

    Google Scholar 

  2. E.J. McCartney, Optics of the Atmosphere (Wiley, New York, 1969).

    Google Scholar 

  3. I.I. Kim, B. McArthur, and E. Korevaar, Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications, Proc. SPIE, Vol. 4214, p. 26–37, Optical Wireless Communications III, edited by Eric J. Korevaar (2000).

    Google Scholar 

  4. Brian R. Strickland, Michael J. Lavan, Eric Woodbridge, and Victor Chan, Effects of fog on the bit-error rate of a free-space laser communication system, Appl. Opt., 38, 424–431 (1999).

    Article  ADS  Google Scholar 

  5. S.G. Lambert and W.L. Casey, Laser Communications in Space (Artech, Boston, 1995).

    Google Scholar 

  6. R.H. Kingston, Optical Sources, detectors, and Systems: Fundamentals and Applications (Academic, San Diego, 1995).

    Google Scholar 

  7. W.S. Ross, W.P. Jaeger, J. Nakai, T.T. Nguyen and J.H. Shapiro, Atmospheric Optical Propagation—an Integrated Approach, Opt. Eng., 21, 775 (1982).

    ADS  Google Scholar 

  8. A.K. Majumdar, Laboratory-Simulation Experiment for Optical Communication through Low-Visibility Atmosphere using a diode laser, IEEE J. Quantum Electron., QE-20, 919 (1984).

    Article  ADS  Google Scholar 

  9. R.W. Svorec, Parametric Performance Analysis of Spaceborne Laser Communication Systems, Proc. SPIE, Vol. 295, 66 (1981).

    ADS  Google Scholar 

  10. A.K. Majumdar, Optical Communication between aircraft in low-visibility atmosphere using a diode laser, Appl. Opt., 24(21), 3659–3665 (1985).

    Article  ADS  Google Scholar 

  11. Alan J. MacGovern, David A. Nahrstedt, and Michael M. Johnson, Atmospheric propagation for tactical directed energy application, Proc. SPIE, Vol. 4034, pp. 128–139, Laser Weapons Technology, Todd D. Steiner, Paul H. Merritt, Eds. (2000).

    Google Scholar 

  12. V.I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (translated from Russian by IPST) (Available from the U.S. Dept. of Commerce, NTIS, Springfield, VA 22151), 1971.

    Google Scholar 

  13. Larry C. Andrews, Ronald L. Phillips, and Cynthia Y. Hopen, Laser Beam Scintillation with Applications, SPIE Press, Bellingham, Washington (2001).

    Book  Google Scholar 

  14. Jennifer C. Ricklin, Stephane Bucaille, and Frederic M. Davidson, Performance loss factors for optical communication through clear air turbulence, Proc. SPIE, 5160, 1–12 (2003).

    Article  ADS  Google Scholar 

  15. J.C. Ricklin and F. M. Dadidson, Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communications, J. Opt. Soc. Am. A, 19(9), 1794–1803 (2002).

    Article  ADS  Google Scholar 

  16. Arun K. Majumdar, Higher-order skewness and excess coefficients of some probability distributions applicable to optical propagation phenomena, J. Opt. Soc. Am., 69(1), 199–202 (1979).

    Article  ADS  Google Scholar 

  17. Arun K. Majumdar, Uniqueness of statistics derived from moments of irradiance fluctuations in atmospheric optical propagation, Opt. Commun., 50(1), 1–7 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  18. Arun K. Majumdar, Higher-order statistics of laser-irradiance fluctuations due to turbulence, J. Opt. Soc. Am. A, 1, 1067–1074 (1984).

    Article  ADS  Google Scholar 

  19. Arun K. Majumdar and Hideya Gamo, Statistical measurements of irradiance fluctuations of a multipass laser beam propagated through laboratory-simulated atmospheric turbulence, Appl. Opt., 21(12), 2229–2235 (1982).

    Article  ADS  Google Scholar 

  20. Hideya Gamo and Arun K. Majumdar, Atmospheric turbulence chamber for optical transmission experiment: characterization by thermal method, Appl. Opt., 17(23), 3755–3761 (1978).

    Article  ADS  Google Scholar 

  21. Arun K. Majumdar, John A. DiUbaldo, and Alenka Brown-VanHoozer, Laboratory Simulation of Atmospheric Turbulence for Laser propagation: design and characterization, Proc. SPIE. Vol. 3432 (1998).

    Google Scholar 

  22. M.A. Al-Habash, L.C. Andrews and R. L. Phillips, Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media, Optical Eng., 40(8), 1554–1562 (2001).

    Article  ADS  Google Scholar 

  23. M. Nakagami, The m distribution—a general formula of intensity distribution of rapid fading, in Statistical Methods in Radio Wave Propagation, edited by W.C. Hoffman, 3–36 (Pergamon, New York, 1960).

    Google Scholar 

  24. Robert K. Tyson, Bit-error-rate for free-space adaptive optics laser communication, J. Opt. Soc. Am. A, 19(40), 753–758 (2002).

    Article  ADS  Google Scholar 

  25. Sherman Karp, Robert M. Gagliardi, Steven E. Moran and Larry B. Stotts, Optical Channels (Plenum Press, New York, 1988).

    Google Scholar 

  26. H.T. Yura and W.G. McKinley, Optical Scintillation Statistics for IR ground-to-space laser communication systems, Appl. Opt., 22(21), 3353–3358 (1983).

    Article  ADS  Google Scholar 

  27. H.G. Salfren, Effect of atmospheric turbulence on the bit error probability of a space to ground neaf infrared laser communications link using binary pulse position modulation and an avalanche photodiode detector, NASA Technical Memorandum 100699, Scientific and Technical Information Branch, 1987.

    Google Scholar 

  28. R.M. Gagliardi and S. Karp, M-ary Poisson detection and optical communication, IEEE Trans. Commun. Tech., COM-17, 208–216 (1969).

    Article  Google Scholar 

  29. Robert M. Gagliardi and Sherman Karp, Optical Communications (Robert E. Krieger Publishing Company, Malabar, Florida, 1988).

    Google Scholar 

  30. Arun K. Majumdar and William C. Brown, Atmospheric Turbulence effecys on the Performance of Multi-Gigabit Downlink PPM Laser Communications, Proc. SPIE, Vol. 1218, 568–584, Free-Space Laser Communication Technologies II (1990).

    Article  ADS  Google Scholar 

  31. Fotios Panagiotis Kourouniotis, Atmospheric Turbulence and Multiple Scattering effects on the Bit Error Rate of the Optical Receiver for PPM MultiGigabit Laser Communications, Master of Science Thesis, University of Colorado (1991).

    Google Scholar 

  32. J.H. Churnside and R. J. Hill, Probability density of irradiance scintillations for strong path-integrated refractive turbulence, J. Opt. Soc. Am. A., 4(4), 727–733 (1987).

    Article  ADS  Google Scholar 

  33. Akira Ishimaru, Wave Propagation and Scattering in Random Media, Vol.2 (Academic Press, 1978).

    Google Scholar 

  34. Shin Tsy Hong, I. Sreenivasiah, and Akira. Ishimaru, Plane Wave Pulse Propagatioin Through Random Media, IEEE Trans. Antennas Propagation, AP-25, 6 (1997).

    Google Scholar 

  35. T.M. Shay, D.A. Hazzard, J. MacCannell, G. Lee, CD. Garrett, J. A. Payne, N. Dahlstrom and S. Horan, First Experimental Demonstration of Full-Duplex optical Communications on a Single Laser Beam, AIAA 15th Annual AIAA/Utah State University Small Satellite Conference, August 13–16, 2001.

    Google Scholar 

  36. TGerardo G. Ortiz, Shinhak Lee, Steve Monacos, Malcom Wright and Abhijit Biswas, Design and development of a robust ATP subsystem for the Altair UAV-to-Ground Lasercomm 2.5 Gbps Demonstration, In Free-Space Laser Communication Technologies XV, G. Stephen Mecherle, Editor, Proc. SPIE, Vol. 4975 (2003).

    Google Scholar 

  37. J.M. Kahn and J. R. Barry, Wireless infrared communications, Proc. IEEE. 85(3), 265–298 (1997).

    Article  Google Scholar 

  38. G.W. Marsh and J. M. Kahn, Performance evaluation of experimental 50-Mbpss diffuse infrared wireless link using on-off keying with decision-feedback equalization, IEEE Trans. Commun., 44(11), 1496–1504 (1996).

    Article  Google Scholar 

  39. A.P. Tang and J. M. Kahn, Wireless infared communication links using multi-beam transmitter and imaging receivers, Proc. IEEE Intl. Conf. Commun., pp. 180–186 (1996).

    Google Scholar 

  40. Koorosh Akhavan, Mohsen Kavehrad and Svetla Jivkova, High-speed power-efficient indoor wireless infrared communication using code combining-Part I, IEEE Trans. Commun., 50(7), 1098–1109 (2002).

    Article  Google Scholar 

  41. Lijun Jiang, George Chung Kit Chen, Ye Yang, New Wei Lee, Allen Yeo and Hongga Li, Light-emitting-diode-based eide-field-of-view transceiver for indoor optical infrared wireless communication, Opt. Eng., 43(4), 918–923 (2004).

    Article  ADS  Google Scholar 

  42. Soo Hee Khoo, Wenwei Zhang, Grahame E. Faulkner, Dominic C. O’Brien and David J. Edwards, Receiver angle diversity design for high-speed diffuse indoor wireless communications, Proc. SPIE, Vol. 4530, 116–124, Optical Wireless Communication IV, edited by Eric J. Korevaar (2001).

    Google Scholar 

  43. Neil Savage, Linking with light, IEEE Spectrum, 39(8), 32–35 (2002).

    Article  Google Scholar 

  44. Sadik Esener and Philippe Marchand, Present and future needs of free-space optical interconnects, internet website: http://ipdps.eece.unm.edu/2000/wocs/18001109.pdf

    Google Scholar 

  45. Arun K. Majumdar and George H. Fortescue, Wide-beam atmospheric optical communication for aircraft application using semiconductor diodes, Appl. Opt., 22(16), 2495–2504 (1983).

    Article  ADS  Google Scholar 

  46. Isaac I. Kim, Harel Hakakha, Prasanna Adhikari, Eric Korevaar and Arun K. Majumdar, Scintillation reduction using multiple transmitters, in Free-Space Laser Communications Technologies IX, Proc. SPIE, Vol. 2990, 1997.

    Google Scholar 

  47. M. Jeganathan, K.E. Wilson, and J.R. Lesh, Preliminary analysis of fluctuations in the received Uplink-Beacon-Power data obtained from the GOLD experiments, JPL’s TDA Progress Report 42-124, 20–32 (1996).

    Google Scholar 

  48. V. Vilnrotter, C. W. La, M. Srinivasan, R. Mukai, and K. Andrews, An optical array receiver for deep-space communication through atmospheric turbulence, JPL Publication: IPN Progress Report, Report 42-154, 1–21 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media Inc.

About this chapter

Cite this chapter

Majumdar, A.K. (2005). Free-space laser communication performance in the atmospheric channel. In: Free-Space Laser Communications. Optical and Fiber Communications Reports, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-28677-8_3

Download citation

Publish with us

Policies and ethics