Skip to main content

UHV-STM Nanofabrication on Silicon

  • Chapter
  • 6270 Accesses

Abstract

The ultrahigh vacuum scanning tunneling microscope (UHV-STM) offers intriguing opportunities to explore the integration of novel nanotechnologies with existing semiconductor platforms. This chapter describes the development of the atomic-resolution hydrogen resist technique and its application to the templated self-assembly of molecular systems on silicon. The observation of a giant isotope effect in STM hydrogen desorption experiments has led to the use of deuterium to retard hot-carrier degradation in CMOS transistor technology. We have also explored the integration of carbon nanotubes with silicon and the III-V compound semiconductors. This has been facilitated by the development of the dry contact transfer (DCT) technique that enables atomically clean nanotube/substrate systems to be achieved, even for highly reactive surfaces like atomically clean silicon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. International Technology Roadmap for Semiconductors (2003), http://public.itrs.net.

    Google Scholar 

  2. A. Javey, J. Guo, D. B. Farmer, Q. Wang, D. Wang, R. G. Gordon, M. Lundstrom, and H. Dai, Nano Lett. 3, 447 (2004).

    Article  Google Scholar 

  3. J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature (London) 391, 59 (1998).

    Article  Google Scholar 

  4. T.W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber, Nature (London) 391, 62 (1998).

    Article  CAS  Google Scholar 

  5. C. Rettig, M. Bödecker, and H. Hövel, J. Phys. D: Appl. Phys. 36, 818 (2003).

    Article  CAS  Google Scholar 

  6. J. W. Lyding, S. Skala, J. S. Hubacek, R. Brockenbrough, and G. Gammie, Rev. Sci. Instrum. 59, 1897 (1988).

    Article  Google Scholar 

  7. R. T. Brockenbrough and J. W. Lyding, Rev. Sci. Instrum. 64, 2225 (1993).

    Article  CAS  Google Scholar 

  8. Ch. Renner, Ph. Niedermann, A. D. Kent, and ⊘. Fischer, Rev. Sci. Instrum. 61, 965 (1990).

    Article  Google Scholar 

  9. E. T. Foley, A. F. Kam, and J. W. Lyding, Rev. Sci. Instrum. 71, 3428 (2000).

    Article  CAS  Google Scholar 

  10. E. T. Foley, N. L. Yoder, N. P. Guisinger, and M. C. Hersam, Rev. Sci. Instrum. 75, 5280 (2004).

    Article  CAS  Google Scholar 

  11. J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennet, Appl. Phys. Lett. 56, 2001 (1990).

    Article  CAS  Google Scholar 

  12. R. S. Becker, G. S. Higashi, Y. J. Chabal, and A. J. Becker, Phys. Rev. Lett. 65, 1917 (1990).

    Article  CAS  Google Scholar 

  13. J. W. Lyding, T.-C. Shen, J. S. Hubacek, J. R. Tucker, and G. C. Abeln, Appl. Phys. Lett. 64, 2010 (1994).

    Article  CAS  Google Scholar 

  14. J. J. Boland, Surf. Sci. 261, 17 (1992).

    Article  CAS  Google Scholar 

  15. Lequn Liu, Jixin Yu, and J. W. Lyding, Appl. Phys. Lett. 78, 386 (2001).

    Article  CAS  Google Scholar 

  16. L. Liu, J. Yu, and J. W. Lyding, IEEE T. Nanotechnol. 1, 176 (2002).

    Article  Google Scholar 

  17. T. C. Shen, C. Wang, G. C. Abeln, J. R. Tucker, J. W. Lyding, Ph. Avouris, and R. E. Walkup, Science 268, 1590 (1995).

    Article  CAS  Google Scholar 

  18. R. E. Walkup, D. M. Newns, and Ph. Avouris, in Atomic and Nanometer-Scale Modification of Materials: Fundamentals and Applications, edited by Phaedon Avouris (Kluwer Academic Publishers, 1993), pp. 97–109.

    Google Scholar 

  19. M. C. Hersam, N. P. Guisinger, and J. W. Lyding, Nanotechnology 11, 70 (2000).

    Article  CAS  Google Scholar 

  20. J. W. Lyding (unpublished).

    Google Scholar 

  21. T.-C. Shen, C. Wang, J.W. Lyding, and J.R. Tucker, Appl. Phys. Lett. 66, 976 (1995).

    Article  CAS  Google Scholar 

  22. J. W. Lyding, T.-C. Shen, G. C. Abeln, C. Wang, and J. R. Tucker, Nanotechnology 7, 128 (1996).

    Article  CAS  Google Scholar 

  23. D. P. Adams, L. L. Tedder, T. M. Mayer, B. S. Swartzentruber, and E. Chason, Phys. Rev. Lett. 74, 5088 (1995).

    Article  CAS  Google Scholar 

  24. G. C. Abeln, S. Y. Lee, J. W. Lyding, D. S. Thompson, and J. S. Moore, Appl. Phys. Lett. 70, 2747 (1997).

    Article  Google Scholar 

  25. N. P. Guisinger, M. E. Greene, R. Basu, A. S. Baluch, and M. C. Hersam, Nano Lett. 4, 55 (2004).

    Article  CAS  Google Scholar 

  26. R. Basu, N. P. Guisinger, M. E. Greene, and M. C. Hersam, Appl. Phys. Lett. 85, 2619 (2004).

    Article  CAS  Google Scholar 

  27. J. W. Lyding and Ph. Avouris (private discussion).

    Google Scholar 

  28. J. W. Lyding, T.-C. Shen, G. C. Abeln, C. Wang, E. T. Foley, and J. R. Tucker, Mat. Res. Soc. Symp. Proc. 380, 187 (1995).

    CAS  Google Scholar 

  29. Ph. Avouris, R. E. Walkup, A. R. Rossi, T.-C. Shen, G. Abeln, J. R. Tucker, and J. W. Lyding, Chem. Phys. Lett. 257, 148 (1996).

    Article  CAS  Google Scholar 

  30. D. Menzel and R. Gomer, J. Chem. Phys. 41, 331 (1964); P. Redhead, Can. J. Phys. 42, 886 (1964).

    Google Scholar 

  31. J. W. Lyding, K. Hess, and I. C. Kizilyalli, Appl. Phys. Lett. 68, 2526 (1996).

    Article  CAS  Google Scholar 

  32. A. B. Fowler, U.S. Patent No. 3,849,204 (1974).

    Google Scholar 

  33. S. Wolf, Silicon Processing for the VLSI Era, vol. 3—The Submicron MOSFET, (Lattice Press, 1995), pp. 559–674.

    Google Scholar 

  34. Z. Chen, K. Hess, J. Lee, J. W. Lyding, E. Rosenbaum, I. Kizilyalli, S. Chetlur, and R. Huang, IEEE Electron Device Lett. 21, 24 (2000).

    Article  CAS  Google Scholar 

  35. Jinju Lee, K. Cheng, Z. Chen, K. Hess, and J. W. Lyding, Y.K. Kim, S.H. Lee, H.S. Lee, Y.H. Lee, Y.W. Kim and K.P. Suh, IEEE Electron Device Lett. 21, 221 (2000).

    Article  CAS  Google Scholar 

  36. E. T. Foley, A. F. Kam, J.W. Lyding, and Ph. Avouris, Phys. Rev. Lett. 80, 1336 (1998).

    Article  CAS  Google Scholar 

  37. C. G. Van de Walle and W. B. Jackson, Appl. Phys. Lett. 69, 2441 (1996).

    Article  Google Scholar 

  38. S. Iijima and T. Ichihashi, Nature (London) 363, 603 (1993).

    Article  CAS  Google Scholar 

  39. D. S. Bethune, C. H. Klang, M. S. deVries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature (London) 363, 605 (1993).

    Article  CAS  Google Scholar 

  40. M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Eds.), Carbon Nanotubes: Synthesis, Structure, and Applications (Springer, Berlin, 2001).

    Google Scholar 

  41. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

    Google Scholar 

  42. S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, and Ph. Avouris, Appl. Phys. Lett. 80, 3817 (2002).

    Article  CAS  Google Scholar 

  43. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Nature (London) 424, 654 (2003).

    Article  CAS  Google Scholar 

  44. J. A. Misewich, R. Martel, Ph. Avouris, J. C. Tsang, S. Heinze, and J. Tersoff, Science 300, 783 (2003).

    Article  CAS  Google Scholar 

  45. V. Sazonova, Y. Yaish, H. Üstünel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature (London) 431, 284 (2004).

    Article  CAS  Google Scholar 

  46. J. Appenzeller, R. Martel, V. Derycke, M. Radosavljević, S. Wind, D. Neumayer, and Ph. Avouris, Microelectron. Eng. 64, 391 (2002).

    Article  CAS  Google Scholar 

  47. Y.-C. Tseng, P. Xuan, A. Javey, R. Malloy, Q. Wang, J. Bokor, and H. Dai, Nano Lett. 4, 123 (2004).

    Article  CAS  Google Scholar 

  48. M. Tzolov, B. Chang, A. Yin, D. Straus, J. M. Xu, and G. Brown, Phys. Rev. Lett. 92, 075505 (2004).

    Article  CAS  Google Scholar 

  49. A. Akturk, G. Pennington, and N. Goldsman, Proc. 3rd IEEE Conference on Nanotechnology 1, 24 (2003).

    Google Scholar 

  50. W. Orellana, R. H. Miwa, and A. Fazzio, Phys. Rev. Lett. 91, 166802 (2003).

    Article  CAS  Google Scholar 

  51. Ph. Avouris, R. Martel, H. Ikeda, M. C. Hersam, H. R. Shea, and A. Rochefort, in Science and Application of Nanotubes, edited by D. Tomanek and R. J. Enbody (Kluwer Academic/Plenum Publishers, New York, 2000), pp. 223–237.

    Google Scholar 

  52. T. Rakshit, G.-C. Liang, A. W. Ghosh, and S. Datta, Nano Lett. 4, 1803 (2004).

    Article  CAS  Google Scholar 

  53. D. J. Hornbaker, Ph.D. thesis, University of Illinois at Urbana-Champaign (2003).

    Google Scholar 

  54. K. L. Lu, R. M. Lago, Y. K. Chen, M. L. H. Green, P. J. F. Harris, and S. C. Tsang, Carbon 34, 814 (1996).

    Article  CAS  Google Scholar 

  55. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, and R. C. Haddon, Science 282, 95 (1998).

    Article  CAS  Google Scholar 

  56. S. Niyogi, M. A. Hamon, D. E. Perea, C. B. Kang, B. Zhao, S. K. Pal, A. E. Wyant, M. E. Itkis, and R. C. Haddon, J. Phys. Chem. B 107, 8799 (2003).

    Article  CAS  Google Scholar 

  57. M. Ouyang, J.-L. Huang, C. L. Cheung, and C. M. Lieber, Science 292, 702 (2001).

    Article  CAS  Google Scholar 

  58. Y. Terada, B. K. Choi, S. Heike, M. Fujimori, and T. Hashizume, Jap. J. Appl. Phys. 42, 4739 (2003).

    Article  CAS  Google Scholar 

  59. A. S. Baluch, N. P. Guisinger, R. Basu, E. T. Foley, and M. C. Hersam, J. Vac. Sci. Technol. A 22, L1 (2004).

    Article  CAS  Google Scholar 

  60. P. M. Albrecht and J. W. Lyding, Appl. Phys. Lett. 83, 5029 (2003).

    Article  CAS  Google Scholar 

  61. Heat-treated braided fiberglass sleeving, SPC Technology, 4801 N. Ravenswood Ave., Chicago, IL 60640.

    Google Scholar 

  62. Carbon Nanotechnologies, Inc., 16200 Park Row, Houston, TX 77084.

    Google Scholar 

  63. SouthWest NanoTechnologies, Inc., 2360 Industrial Blvd., Norman, OK 73069.

    Google Scholar 

  64. K. A. Ritter, P. M. Albrecht, and J. W. Lyding (unpublished).

    Google Scholar 

  65. L. B. Ruppalt, P. M. Albrecht, and J. W. Lyding, J. Vac. Sci. Technol. B 22, 2005 (2004).

    Article  CAS  Google Scholar 

  66. C. T. White and J. W. Mintmire, Nature (London) 394, 29 (1998).

    Article  CAS  Google Scholar 

  67. P. Delaney, H. J. Choi, J. Ihm, S. G. Louie, and M. L. Cohen, Nature (London) 391, 466 (1998).

    Article  CAS  Google Scholar 

  68. P. M. Albrecht and J. W. Lyding, AIP Conf. Proc. 723, 173 (2004).

    Article  CAS  Google Scholar 

  69. Ph. Lambin, V. Meunier, and L. P. Biro, Carbon 36, 701 (1998).

    Article  CAS  Google Scholar 

  70. P. M. Albrecht and J. W. Lyding, Superlattice Microst. 34, 407 (2003).

    Article  CAS  Google Scholar 

  71. T. Maltezopoulos, A. Kubetzka, M. Moregenstern, R. Wiesendanger, S. G. Lemay, and C. Dekker, Appl. Phys. Lett. 83, 1011 (2003).

    Article  CAS  Google Scholar 

  72. M. Freitag, Y. Martin, J. A. Misewich, R. Martel, and Ph. Avouris, Nano Lett. 3, 1067 (2003).

    Article  CAS  Google Scholar 

  73. Y.-H. Kim, M. J. Heben, and S. B. Zheng, Phys. Rev. Lett. 92, 176102 (2004).

    Article  Google Scholar 

  74. A. Jensen, J. R. Hauptmann, J. Nygård, J. Sadowski, and P. E. Lindelof, Nano Lett. 4, 349 (2004).

    Article  CAS  Google Scholar 

  75. L. B. Ruppalt, P. M. Albrecht, and J. W. Lyding, in 2004 Fourth IEEE Conference on Nanotechnology, Munich, Germany (August 2004).

    Google Scholar 

  76. L. B. Ruppalt, P. M. Albrecht, and J. W. Lyding (to be published), 2005.

    Google Scholar 

  77. Y.-H. Kim, M. J. Heben, and S. B. Zhang, AIP Conf. Proc. 772, 1031 (2005).

    Article  CAS  Google Scholar 

  78. S. G. Lemay, J. W. Janssen, M. van den Hout, M. Mooij, M. J. Bronikowski, P. A. Willis, R. E. Smalley, L. P. Kouwenhoven, and C. Dekker, Science 412, 617 (2001).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Albrecht, P.M., Ruppalt, L.B., Lyding, J.W. (2007). UHV-STM Nanofabrication on Silicon. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-28668-6_33

Download citation

Publish with us

Policies and ethics