Skip to main content

Electrical SPM-Based Nanofabrication Techniques

  • Chapter

Abstract

Scanning probe microscopes (SPM) have been envisaged and applied from the beginning as tools both to image surfaces with unprecedented resolution and to interact with surfaces like an extension of the operator’s fingertips. The prototype for electrical SPM certainly was the scanning tunneling microscope (STM). For the purpose of this chapter we do not consider mechanical nano-machining, i.e., scratching with the tunneling-tip, as a form of electrical SPM, despite the mechanical contact between tip and specimen surface being induced by low tunneling voltages and high current set-points. Applying a voltage of a few 10 V to the tip, McCord and Pease [1] succeeded in writing lines of contamination on bare silicon that protected the substrate during the subsequent etch. Line widths below 50 nm were achieved. Contamination lines were already observed before on metallic glass [2]. Later, Okawa and Aono [3] were able to induce the formation of polymeric nanowires on a graphite substrate covered by a monolayer of a diacetylene compound by applying voltage pulses to the STM tip. Positioning single xenon atoms on a nickel (110) surface at cryogenic temperatures, as demonstrated by Eigler [4], or removing a single atom from a MoS2 crystal to create, according to the Guinness World Records book, the smallest hole in the world, as shown by Heckl, mark the ultimate forms of nanofabrication possible with the STM. So far, however, most application- or device-directed nanofabrication by SPM takes place on a scale of molecules to several dozen nanometers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. A. McCord, R. F. W. Pease, Surf. Sci. 181(1–2), 278–284 (1987).

    Article  CAS  Google Scholar 

  2. M. Ringger, H. R. Hidber, R. Schlögl, P. Oelhafen, H. J. Güntherodt, Appl. Phys. Lett. 46(9), 832–834 (1985).

    Article  CAS  Google Scholar 

  3. Y. Okawa, M. Aono, Nature 409, 683–884 (2001).

    Article  CAS  Google Scholar 

  4. D. M. Eigler, E. K. Schweizer, Nature 344 (6266), 524–526 (1990).

    Article  Google Scholar 

  5. D. Wouters, U. S. Schubert, Angew. Chem. Int. Ed. 43, 2480–2495 (2004).

    Article  CAS  Google Scholar 

  6. S. Lüscher, A. Fuhrer, R. Held, T. Heinzel, K. Ensslin, M. Bichler, W. Wegscheider, Microelectron. J. 33(4), 319–321 (2002).

    Article  Google Scholar 

  7. T. Ono, S. Yoshida, M. Esashi, Nanotechnology 14(9), 1051–1054 (2003).

    Article  CAS  Google Scholar 

  8. H. J. Mamin, B. D. Terris, L. S. Fan, S. Hoen, R. C. Barrett, D. Rugar; IBM J. Res. Devel. 39(6), 681–699 (1995).

    Article  CAS  Google Scholar 

  9. W. M. D. Wright, D. G. Chetwynd, Nanotechnology 9, 133–142 (1998).

    Article  CAS  Google Scholar 

  10. G. Schitter, F. Allgöwer, A. Stemmer, Nanotechnology 15(1), 108–114 (2004).

    Article  CAS  Google Scholar 

  11. P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Dürig, B. Gotsmann, W. Häberle, M. A. Lantz, H. E. Rothuizen, R. Stutz, G. K. Binnig, IEEE Trans. Nanotechnol. 1(1), 39–55 (2002).

    Article  Google Scholar 

  12. H. O. Jacobs, G. M. Whitesides, Science 291(5509), 1763 (2001).

    Article  CAS  Google Scholar 

  13. D. M. Kolb, R. Ullmann, T. Will, Science 275, 1097 (1997).

    Article  CAS  Google Scholar 

  14. J. R. LaGraff, A. A. Gewirth, J. Phys. Chem. 98, 11246 (1994).

    Article  CAS  Google Scholar 

  15. O. E. Hüsser, D. H. Craston. A. J. Bard, J. Electrochem. Soc. 136(11), 3222 (1989).

    Article  Google Scholar 

  16. G. S. Hsiao, R. M. Penner, J. Kingsley, Appl. Phys. Lett. 64(11), 1350 (1994).

    Article  CAS  Google Scholar 

  17. R. T. Poetzschke, G. Staikov, W. J. Lorenz, W. Wiesbeck, J. Electrochem. Soc. 146(1), 141 (1999).

    Article  Google Scholar 

  18. F. Forouzan, A. J. Bard, J. Phys. Chem. B 101, 10876 (1997).

    Article  CAS  Google Scholar 

  19. V. Kirchner, X. Xia, R. Schuster, Acc. Chem. Res. 34, 34 (2001).

    Article  CAS  Google Scholar 

  20. X. Xiao, M. Nielinger, H. Baltruschat, Electrochim. Acta 48, 3093 (2003).

    Article  CAS  Google Scholar 

  21. R. M. Nyffenegger, R. M. Penner, J. Phys. Chem. 100, 17041 (1996).

    Article  CAS  Google Scholar 

  22. D. R. Yaniv, L. D. McCormick, Nanotechnology 3, 44 (1992).

    Article  Google Scholar 

  23. R. Yang, D. F. Evans, W. A. Hendrickson, Langmuir 11, 211 (1995).

    Article  CAS  Google Scholar 

  24. S.-Y. Jang, M. Marquez, G. A. Sotzing, J. Am. Chem. Soc. 126, 9476 (2004).

    Article  CAS  Google Scholar 

  25. M. A. McCord, D. D. Awschalom, Appl. Phys. Lett. 57(20), 2153 (1990).

    Article  CAS  Google Scholar 

  26. R. K. Workman, C. A. Peterson, D. Sarid, Surface Science 423, L277 (1999).

    Article  CAS  Google Scholar 

  27. W. Li, J. A. Virtanen, R. M. Penner, Appl. Phys. Lett. 60(10), 1181 (1992).

    Article  CAS  Google Scholar 

  28. M. Lee, R. O’Hayre, F. B. Prinz, T. M. Gür, Appl. Phys. Lett. 85(16), 3552 (2004).

    Article  CAS  Google Scholar 

  29. A. J. Bard, M. V. Mirkin, Scanning Electrochemical Microscopy, Marcel Dekker, New York (2001).

    Book  Google Scholar 

  30. K. Borgwarth, J. Heinze, J. Electrochem. Soc. 146(9), 3285 (1999).

    Article  CAS  Google Scholar 

  31. E. Amman, D. Mandler, J. Electrochem. Soc. 148(8), C533 (2001).

    Article  Google Scholar 

  32. C. Marck, K. Borgwarth, J. Heinze, Chem. Mater. 13, 747 (2001).

    Article  CAS  Google Scholar 

  33. J. Zhou, D. O. Wipf, J. Electrochem. Soc. 144(4), 1202 (1997).

    Article  CAS  Google Scholar 

  34. K. Borgwarth, C. Ricken, D. G. Ebling, J. Heinze, Ber. Bunsenges. Phys. Chem. 99(11), 1421 (1995).

    CAS  Google Scholar 

  35. O. de Abril, D. Mandler, P.R. Unwin, Electrochem. Solid-State Lett. 7(6), C71 (2004).

    Article  CAS  Google Scholar 

  36. I. Turyan, U. O. Krasovec, B. Orel, T. Saraidorov, R. Reisfeld, D. Mandler, Adv. Mater. 12(5), 330 (2000).

    Article  CAS  Google Scholar 

  37. Y. Li, B. W. Maynor, J. Liu, J. Am. Chem. Soc. 123, 2105 (2001).

    Article  CAS  Google Scholar 

  38. B. W. Maynor, S. F. Filocamo, M. W. Grinstaff, J. Liu, J. Am. Chem. Soc. 124, 522 (2002).

    Article  CAS  Google Scholar 

  39. G. Agarwal, R. R. Naik, M. O. Stone, J. Am. Chem. Soc. 125, 7408 (2003).

    Article  CAS  Google Scholar 

  40. B. W. Maynor, J. Li, C. Lu, J. Liu, J. Am. Chem. Soc. 126, 6409 (2004).

    Article  CAS  Google Scholar 

  41. L. A. Nagahara, T. Thundat, S. M. Lindsay, Appl. Phys. Lett. 57(3), 270 (1990).

    Article  CAS  Google Scholar 

  42. Z.-X. Xie, D. M. Kolb, J. Electroan. Chem. 481, 177 (2000).

    Article  CAS  Google Scholar 

  43. Q. Chi, J. Zhang, E. P. Friis, J. E. T. Andersen, J. Ulstrup, Surf. Sci. 463, L641 (2000).

    Article  CAS  Google Scholar 

  44. L. Roue, L. Chen, D. Guay, Langmuir 12, 5818 (1996).

    Article  CAS  Google Scholar 

  45. J. Ufheil, F. M. Boldt, M. Börsch, K. Borgwarth, J. Heinze, Bioelectrochem. 52, 103 (2000).

    Article  CAS  Google Scholar 

  46. L. Chen, D. Guay, J. Electrochem. Soc. 141(4), L43 (1994).

    Article  CAS  Google Scholar 

  47. C. Lebreton, Z. Z. Wang, Appl. Phys. A. 66, S777 (1998).

    Article  CAS  Google Scholar 

  48. M. Meltzer, D. Mandler, J. Chem. Faraday Trans. 91(6), 1019 (1995).

    Article  CAS  Google Scholar 

  49. Z.-X. Xie, X. W. Cai, J Tang, Y. A. Chen, B. E. Mao, Chem. Phys. Lett. 322, 219 (2000).

    Article  CAS  Google Scholar 

  50. D. Mandler, A. J. Bard, Langmuir 6, 1489 (1990).

    Article  CAS  Google Scholar 

  51. R. M. Penner, M. J. Heben, N. S. Lewis, C. F. Quate, Appl. Phys. Lett. 58(13), 1389 (1991).

    Article  CAS  Google Scholar 

  52. A. Majumdar, P. I. Oden, J. P. Carrejo, L. A. Nagahara, J. J. Graham, J. Alexander, Appl. Phys. Lett. 61(19), 2293 (1992).

    Article  CAS  Google Scholar 

  53. S. W. Park, H. T. Soh, C. F. Quate, S.-I. Park, Appl. Phys. Lett. 67(16), 2415 (1995).

    Article  CAS  Google Scholar 

  54. K. Ohtsuka, K. Yonei, Jpn. J. Appl. Phys. 41, part2, 6B, L667 (2002).

    Article  CAS  Google Scholar 

  55. S. Juhl, D. Phillips, R. A. Vaia, S. F. Lyuksyutov, P. B. Paramonov, Appl. Phys. Lett. 85(17), 3836 (2004).

    Article  CAS  Google Scholar 

  56. R.-W. Li, T. Kanki, H.-A. Tohyama, M. Hirooka, H. Tanaka, T. Kawai, Nanotechnology 16, 28 (2005).

    Article  CAS  Google Scholar 

  57. O. Schneegans, A. Moradpour, L. Boyer, D. Balutaud, J. Phys. Chem. B 108, 9882 (2004).

    Article  CAS  Google Scholar 

  58. C. Schönenberger, Phys. Rev. B 45(7), 3861 (1992).

    Article  Google Scholar 

  59. P. Mesquida, A. Stemmer, Microelectron. Eng. 61–62, 671 (2002).

    Article  Google Scholar 

  60. N. Naujoks, A. Stemmer, Microelectron. Eng. 67–68, 736 (2003).

    Article  CAS  Google Scholar 

  61. N. Naujoks, A. Stemmer, Colloids Surf. A 249, 69 (2004).

    Article  CAS  Google Scholar 

  62. P. Mesquida, A. Stemmer, Adv. Mater. 13(18), 1395 (2001).

    Article  CAS  Google Scholar 

  63. N. Naujoks, A. Stemmer, Microelectron. Eng. 78–79, 331 (2005).

    Article  CAS  Google Scholar 

  64. H. Fudouzi, M. Kobayashi, M. Egashira, N. Shinya, Adv. Powder Technol. 8(3), 251 (1997).

    Google Scholar 

  65. H. Fudouzi, M. Kobayashi, N. Shinya, Langmuir 18(20), 7649 (2002).

    Article  CAS  Google Scholar 

  66. H. O. Jacobs, S. A. Campbell, M. G. Steward, Adv. Mater. 14(21), 1553 (2002).

    Article  CAS  Google Scholar 

  67. M. Kang, H. Kim, B. Han, J. Suh, J. Park, M. Choi, Microelectron. Eng. 71, 229 (2004).

    Article  CAS  Google Scholar 

  68. T. J. Krinke, H. Fissan, K. Deppert, M. H. Magnusson, L. Samuelson, Appl. Phys. Lett. 78(23), 3708 (2001).

    Article  CAS  Google Scholar 

  69. G.M. Sessler, in Electrets. Topics in Applied Physics, edited by G.M. Sessler (Springer, Berlin, 1987), Vol. 33 (2nd edition), Chap. 1,2.

    Google Scholar 

  70. M. Nonnenmacher, M. P. O’Boyle, H. K. Wickramasinghe, Appl. Phys. Lett. 58(25), 2921 (1991).

    Article  Google Scholar 

  71. M. Fujihira, Ann. Rev. Mater. Sci. 29, 353 (1999).

    Article  CAS  Google Scholar 

  72. H. O. Jacobs, P. Leuchtmann, O. J. Homan, A. Stemmer, J. Appl. Phys. 84(3), 1168 (1998).

    Article  CAS  Google Scholar 

  73. S. P. Wilks, T. G. G. Maffeis, G. T. Owen, K. S. Teng, M.W. Penny, H. Ferkel, J. Vac. Sci. Technol. B 22(4), 1995 (2004).

    Article  CAS  Google Scholar 

  74. J. E. Stern, B. D. Terris, H. J. Mamin, D. Rugar, Appl. Phys. Lett. 53(26), 2717 (1988).

    Article  Google Scholar 

  75. B. D. Terris, J. E. Stern, D. Rugar, H. J. Mamin, J. Vac. Sci. Technol. B 8(1), 374 (1990).

    Article  CAS  Google Scholar 

  76. N. Umeda, K. Makino, T. Takahashi, A. Takayanagi, J. Vac. Sci. Technol. B 12(3), 1600 (1994).

    Article  CAS  Google Scholar 

  77. P. Mesquida, H. F. Knapp, A. Stemmer, Surf. Interface Anal. 33, 159 (2002).

    Article  CAS  Google Scholar 

  78. P. Mesquida, Ph.D. thesis, ETH Zurich, 2002, (http://e-collection.ethbib.ethz.ch/show?type=diss↛=14854).

    Google Scholar 

  79. W. Olthuis, P. Bergveld, IEEE Trans. El. Insul. 27(4), 691 (1992).

    Article  CAS  Google Scholar 

  80. S. Morita, Y. Sugawara, Y. Fukano, Jpn. J. Appl. Phys. 32 (Pt.1, No.6B), 2983 (1993).

    Article  CAS  Google Scholar 

  81. S. Morita, Y. Sugawara, Y. Fukano, T. Uchihashi, T. Okusako, A. Chayahara, Y. Yamanishi, T. Oasa, Jpn. J. Appl. Phys. 32 (Pt.2, No.12B), L1852 (1993).

    Article  CAS  Google Scholar 

  82. Y. Fukano, T. Uchihashi, T. Okusako, A. Chayahara, Y. Sugawara, Y. Yamanishi, T. Oasa, S. Morita, Jpn. J. Appl. Phys. 33 (Pt.1, No.12A), 6739 (1994).

    Article  CAS  Google Scholar 

  83. Y. Sugawara, Y. Fukano, T. Uchihashi, T. Okusako, S. Morita, Y. Yamanishi, T. Oasa, T. Okada, J. Vac. Sci. Technol. B 12(3), 1627 (1994).

    Article  CAS  Google Scholar 

  84. Y. Fukano, Y. Sugawara, T. Uchihashi, T. Okusako, S. Morita, Y. Yamanishi, T. Oasa, Jpn. J. Appl. Phys. 35 (Pt.1, No.4A), 2394 (1996).

    Article  CAS  Google Scholar 

  85. T. Uchihashi, T. Okusako, Y. Sugawara, Y. Yamanishi, T. Oasa, S. Morita, Jpn. J. Appl. Phys. 33 (Pt.2, No.8A), L1128 (1994).

    Article  Google Scholar 

  86. E. T. Enikov, A. Palaria, Nanotechnology 15, 1211 (2004).

    Article  CAS  Google Scholar 

  87. T. Uchihashi, A. Nakano, T. Ida, Y. Andoh, R. Kaneko, Y. Sugawara, S. Morita, Jpn. J. Appl. Phys. 36 (Pt.1, No.6A), 3755 (1997).

    Article  CAS  Google Scholar 

  88. H. Amjadi, C.-P. Franz, J. Electrostatics 50, 265 (2001).

    Article  CAS  Google Scholar 

  89. R. C. Barrett, C. F. Quate, J. Appl. Phys. 70(5), 2725 (1991).

    Article  CAS  Google Scholar 

  90. B. D. Terris, R. C. Barrett, IEEE Trans. Electron Devices 42(5), 944 (1995).

    Article  CAS  Google Scholar 

  91. I. Fujiwara, S. Kojima, J. Seto, Jpn. J. Appl. Phys. 35 (Pt.1, No.5A), 2764 (1996).

    Article  CAS  Google Scholar 

  92. S. D. Tzeng, C. L. Wu, Y. C. You, T. T. Chen, S. Gwo, H. Tokumoto, Appl. Phys. Lett. 81(26), 5042 (2002).

    Article  CAS  Google Scholar 

  93. T. Uchihashi, T. Okusako, T. Tsuyuguchi, Y. Sugawara, M. Igarashi, R. Kaneko, S. Morita, Jpn. J. Appl. Phys. 33 (Pt.1, No.9B), 5573 (1994).

    Article  CAS  Google Scholar 

  94. J. T. Jones, P. M. Bridger, O. J. Marsh, T. C. McGill, Appl. Phys. Lett. 75(9), 1326 (1999).

    Article  CAS  Google Scholar 

  95. J. Lambert, M. Saint-Jean, C. Guthmann, J. Appl. Phys. 96(12), 7361 (2004).

    Article  CAS  Google Scholar 

  96. N. Gemma, H. Hieda, K. Tanaka, S. Egusa, Jpn. J. Appl. Phys. 34 (Pt.2, No.7A), L859 (1995).

    Article  CAS  Google Scholar 

  97. E. A. Boer, M. L. Brongersma, H. A. Atwater, R. C. Flagan, L. D. Bell, Appl. Phys. Lett. 79(6), 791 (2001).

    Article  CAS  Google Scholar 

  98. E. A. Boer, L. D. Bell, M. L. Brongersma, H. A. Atwater, J. Appl. Phys. 90(6), 2764 (2001).

    Article  CAS  Google Scholar 

  99. T. G. G. Maffeis, G. T. Owen, M. Penny, H. S. Ferkel, S. P. Wilks, Appl. Surf. Sci. 234, 2 (2004).

    Article  CAS  Google Scholar 

  100. J. Mort, The anatomy of Xerography: Its Invention and Evolution (Mc-Farland, London, 1989).

    Google Scholar 

  101. T. B. Jones, Electromechanics of particles (Cambridge Univ. Press, New York, 1995).

    Book  Google Scholar 

  102. I. D. Morrison, S. Ross, Colloidal Dispersions: Suspensions, Emulsions, and Foams (John Wiley & Sons Inc, Weinheim, 2002).

    Google Scholar 

  103. A. Coehn, U. Raydt, Ann. Phys. 30 (4. Folge) 777 (1909).

    Article  Google Scholar 

  104. K. G. Marinova, R. G. Alargova, N. D. Denkov, O. D. Velev, D. N. Petsev, I. B. Ivanov, R. P. Borwsankar, Langmuir 12, 2045 (1996).

    Article  CAS  Google Scholar 

  105. J. Feder, J. Appl. Phys. 47(5), 1741 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Naujoks, N., Mesquida, P., Stemmer, A. (2007). Electrical SPM-Based Nanofabrication Techniques. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-28668-6_31

Download citation

Publish with us

Policies and ethics