Skip to main content

Scanning Tunneling Potentiometry: The Power of STM applied to Electrical Transport

  • Chapter

Abstract

The introduction of scanning tunneling microscopy (STM) followed by scanning tunneling spectroscopy (STS) opened experimental access to the geometric and electronic structure of materials on an atomic scale and essentially ushered in the modern field of nanoscience. The goal of scanning tunneling potentiometry (STP) is to adapt the scanning tunneling probe to measure electrical transport on the same length scale. The approach is to establish a current laterally in the sample, then to map the voltage locally by determining the tip bias that produces no tunneling at each point. The technique is similar to the macroscopic four-probe method commonly adopted for measuring electrical transport, with the inner two probes replaced by a scanning tunneling tip. This chapter describes principles, reviews approaches, and illustrates capabilities of STP.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Binnig and H. Rohrer, Helvetica Physica Acta 55(6), 726 (1982); G. Binnig, H. Rohrer, Ch. Gerber, and W. Weibel, Phys. Rev. Lett. (USA) 49 (1), 57 (1982).

    CAS  Google Scholar 

  2. H. Neddermeyer, Reports on Progress in Physics 59(6), 701 (1996).

    Article  CAS  Google Scholar 

  3. F. M. Chua, Y. Kuk, and P. J. Silverman, Phys. Rev. Lett. (USA) 63(4), 386 (1989).

    Article  CAS  Google Scholar 

  4. Y. Kuk, F. M. Chua, P. J. Silverman, and J. A. Meyer, Phys. Rev. B, Condens. Matter (USA) 41(18), 12393 (1990).

    CAS  Google Scholar 

  5. H. Niehus, R. Spitzl, K. Besocke, and G. Comsa, Phys. Rev. B, Condens. Matter (USA) 43(15), 12619 (1991).

    CAS  Google Scholar 

  6. A. P. Baddorf, D. M. Zehner, G. Helgesen, D. Gibbs, A. R. Sandy, and S. G. J. Mochrie, Phys. Rev. B, Condens. Matter (USA) 48(12), 9013 (1993).

    CAS  Google Scholar 

  7. P. Muralt and D.W. Pohl, Applied Physics Letters 48(8), 514 (1986).

    Article  CAS  Google Scholar 

  8. B. G. Briner, R. M. Feenstra, T. P. Chin, and J. M. Woodall, Phys. Rev. B, Condens. Matter (USA) 54(8), 5283 (1996).

    Google Scholar 

  9. A. D. Kent, I. Maggio-Aprile, Ph. Niedermann, Ch. Renner, and O. Fischer, J. Vac. Sci. Technol. A, Vac. Surf. Films (USA) 8(1), 459 (1990).

    Article  CAS  Google Scholar 

  10. J. P. Pelz and R. H. Koch, Phys. Rev. B, Condens. Matter (USA) 41(2), 1212 (1990).

    Google Scholar 

  11. P. Muralt, H. Meier, D. W. Pohl, and H. Salemink, Superlattices and Microstructures 2(6), 519 (1986); P. Muralt, H. Meier, D.W. Pohl, and H. W. M. Salemink, Applied Physics Letters 50 (19), 1352 (1987).

    Article  CAS  Google Scholar 

  12. A. P. Fein, J. R. Kirtley, and R. M. Feenstra, Review of Scientific Instruments 58(10), 1806 (1987); R. M. Feenstra, W. A. Thompson, and A. P. Fein, Phys. Rev. Lett. (USA) 56 (6), 608 (1986).

    Article  CAS  Google Scholar 

  13. G. Ramaswamy and A. K. Raychaudhuri, Applied Physics Letters 75(13), 1982 (1999).

    Article  CAS  Google Scholar 

  14. Mandar A. Paranjape, Doctor of Philosophy, Indian Institute of Science, 2004.

    Google Scholar 

  15. G. Ramaswamy, A.K. Raychaudhuri, K. Das Gupta, and G. Sambandamurthy, Applied Physics A (Materials Science Processing) 66(suppl., pt. 1–2), 435 (1998).

    Article  Google Scholar 

  16. J. R. Kirtley, S. Washburn, and M. J. Brady, Phys. Rev. Lett. (USA) 60(15), 1546 (1988).

    Article  CAS  Google Scholar 

  17. J. P. Pelz and R. H. Koch, Review of Scientific Instruments 60(3), 301 (1989).

    Article  Google Scholar 

  18. B. G. Briner, R. M. Feenstra, T. P. Chin, and J. M. Woodall, Semiconductor Science and Technology 11(11S), 1575 (1996).

    Article  Google Scholar 

  19. B. Grevin, I. Maggio-Aprile, A. Bentzen, L. Ranno, A. Llobet, and O. Fischer, Phys. Rev. B, Condens. Matter (USA) 62(13), 8596 (2000).

    CAS  Google Scholar 

  20. Yang Dong, R. M. Feenstra, R. Hey, and K. H. Ploog, Journal of Vacuum Science & Technology B (Microelectronics and Nanometer Structures) 20(4), 1677 (2002).

    Article  CAS  Google Scholar 

  21. R. Moller, C. Baur, A. Esslinger, and P. Kurz, Journal ofVacuum Science&Technology B (Microelectronics Processing and Phenomena) 9(2, pt.2), 609 (1991).

    Article  Google Scholar 

  22. B. Koslowski and C. Baur, Journal of Applied Physics 77(1), 28 (1995).

    Article  CAS  Google Scholar 

  23. R. Landauer, Physica D 38(1–3), 226 (1989).

    Article  Google Scholar 

  24. M. A. Schneider, M. Wenderoth, A. J. Heinrich, M. A. Rosentreter, and R. G. Ulbrich, Applied Physics Letters 69(9), 1327 (1996).

    Article  CAS  Google Scholar 

  25. S. Morita, Y. Maita, and Y. Takahashi, Japanese Journal of Applied Physics, Part 2 (Letters) 28(11), 2034 (1989).

    Article  Google Scholar 

  26. J. Besold, R. Thielsch, N. Matz, C. Frenzel, R. Born, and A. Moebius, Thin Solid Films (Switzerland) 293(1–2), 96 (1997).

    Article  CAS  Google Scholar 

  27. M. Paranjape and A. K. Raychaudhuri, Solid State Communications 123(12), 521 (2002).

    Article  CAS  Google Scholar 

  28. M. Paranjape, A. K. Raychaudhuri, N. D. Mathur, and M. G. Blamire, Phys. Rev. B, Condens, Matter Mater. Phys. (USA) 67(21), 214415 (2003).

    Google Scholar 

  29. J. J. Versluijs, F. Ott, and J. M. D. Coey, Applied Physics Letters 75(8), 1152 (1999).

    Article  CAS  Google Scholar 

  30. E. Dagotto, T. Hotta, and A. Moreo, Physics Reports 344(1–3), 1 (2001).

    Article  CAS  Google Scholar 

  31. M. Fath, S. Freisem, A. A. Menovsky, Y. Tomioka, J. Aarts, and J. A. Mydosh, Science 285(5433), 1540 (1999).

    Article  CAS  Google Scholar 

  32. B. Grevin, I. Maggio-Aprile, A. Bentzen, O. Kuffer, I. Joumard, and O. Fischer, Applied Physics Letters 80(21), 3979 (2002).

    Article  CAS  Google Scholar 

  33. A. D. Kent, I. Maggio-Aprile, Ph Niedermann, and O. Fischer, Phys. Rev. B, Condens, Matter Mater. Phys. (USA) 39(16), 12363 (1989); A. D. Kent, I. Maggio-Aprile, Ph Niedermann, Ch Renner, J. M. Triscone, M. G. Karkut, O. Brunner, L. Antognazza, and O. Fischer, Physica C: Superconductivity 162-64 (pt2), 1035 (1989); A. D. Kent, J. M. Triscone, L. Antognazza, O. Brunner, Ch Renner, Ph Niedermann, M. G. Karkut, and O. Fischer, Physica B: Condensed Matter 165-66 (2), 1503 (1990).

    CAS  Google Scholar 

  34. J. Besold, R. Kunze, and N. Matz, Journal of Vacuum Science & Technology B (Microelectronics and Nanometer Structures) 12(3), 1764 (1994).

    Article  CAS  Google Scholar 

  35. R. Landauer, IBM J. Res. Develop. 1,223 (1957).

    Google Scholar 

  36. W. Zwerger, L. Bonig, and K. Schonhammer, Phys. Rev. B, Condens. Matter (USA) 43(8), 6434 (1991).

    Google Scholar 

  37. R. M. Feenstra and B. G. Briner, Superlattices and Microstructures 23(3–4), 699 (1998).

    Article  CAS  Google Scholar 

  38. M. Kohler, Ann. Physik 38, 542 (1940).

    CAS  Google Scholar 

  39. J. Xu, B. Koslowski, R. Moller, K. Lauger, K. Dransfeld, and I. H. Wilson, Journal of Vacuum Science & Technology B (Microelectronics and Nanometer Structures) 12(3), 2156 (1994).

    Article  CAS  Google Scholar 

  40. D. Hoffmann, J. Seifritz, B. Weyers, and R. Moller, J. Electron Spectrosc. Relat. Phenom. 109(1–2), 117 (2000).

    Article  CAS  Google Scholar 

  41. D. G. Cahill and R. J. Hamers, Journal of Vacuum Science & Technology B (Microelectronics Processing and Phenomena) 9(2), 564 (1991).

    Article  CAS  Google Scholar 

  42. M. Tanimoto and K. Arai, Journal of Vacuum Science & Technology B (Microelectronics and Nanometer Structures) 12(3), 2125 (1994).

    Article  CAS  Google Scholar 

  43. E. T. Yu, M. B. Johnson, and J.-M. Halbout, Applied Physics Letters 61(2), 201 (1992).

    Article  CAS  Google Scholar 

  44. M. C. Hersam, N. P. Guisinger, and J. W. Lyding, J. Vac. Sci. Technol. A, Vac. Surf. Films (USA) 18(4, pt. 1–2), 1349 (2000).

    Article  CAS  Google Scholar 

  45. C. S. Chu and R. S. Sorbello, Phys. Rev. B, Condens. Matter (USA) 42(8), 4928 (15).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Baddorf, A.P. (2007). Scanning Tunneling Potentiometry: The Power of STM applied to Electrical Transport. In: Kalinin, S., Gruverman, A. (eds) Scanning Probe Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-28668-6_2

Download citation

Publish with us

Policies and ethics