Skip to main content

System synthesis and integration

  • Chapter
Wideband Amplifiers
  • 1097 Accesses

Abstract

... and that can be true in both the mathematical and technological sense! Well, in math, at least as long as we are dealing with numbers greater than two; but in technology the goal might not be so straightforward and neither are the means of achieving it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.L. Feucht, Handbook of Analog Circuit Design, Academic Press, Inc. San Diego, 1990 See also the latest CD version at <http://www.innovatia.com/>

  2. S. Roach, Signal Conditioning in Oscilloscopes and the Spirit of Invention, (J. Williams, [Editor], The Art and Science of Analog Circuit Design, Part 2) Butterworth-Heinemann, Boston, 1995

    Google Scholar 

  3. P.R. Gray & R.G. Meyer, Analysis and Design of Analog Integrated Circuits, John Wiley, New York, 1969

    MATH  Google Scholar 

  4. J. Williams, Composite Amplifiers, Linear Technology Application Note AN-21, July 1986

    Google Scholar 

  5. P. Starič, Wideband JFET Source Follower, Electronic Engineering, August 1992

    Google Scholar 

  6. J. Williams, Measuring 16-bit Settling Times: the Art of Timely Accuracy, EDN Magazine, Nov. 19, 1998, <http://www.ednmae.com/>

  7. W. Rester, High Speed Design Techniques, Analog Devices, 1996, <http://www.analoe.com/>

  8. A.D. Evans (Editor), Designing with Field Effect Transistors, Siliconix, McGraw-Hill, 1981

    MATH  Google Scholar 

  9. J.E. Lilienfeld, Method and Apparatus for Controlling Electric Current, US Patent 1 745 175, Jan. 28, 1930 (the FET patent, apparently predating the BJT patent by about 23 years)

    Google Scholar 

  10. FET Design Catalog, Siliconix, 1982, <http://www.siliconix.com/>

  11. IC Applications Handbook, Burr-Brown, 1994, <http://www.burr-brown.com/>, <http://www.ti.com/>

  12. A New Approach to OpAmp Design, Application Note AN300-1, Comlinear Corporation, March, 1985

    Google Scholar 

  13. S. Franco, Design with Operational Amplifiers and Analog ICs, McGraw-Hill, 1988

    Google Scholar 

  14. FA. Muller, High Frequency Compensation of RC Amplifiers, Proceedings of the I.R.E., August, 1954, pp. 1271–1276.

    Google Scholar 

  15. B. Orwiller, Vertical Amplifier Circuits, Tektronix, Inc., Beaverton, Oregon, 1969.

    Google Scholar 

  16. F.W. Grover, Inductance Calculation, (Reprint) Instrument Society of America, Research Triangle Park, N. C. 27 709, 1973.

    Google Scholar 

  17. J. Williams, High Speed Amplifier Techniques, Application Note AN-47, Linear Technology, March, 1985, <http://www.lt.com/>

  18. C.R. Battjes, Monolithic Wideband Amplifier, US Patent 4 236 119, Nov. 25, 1980 2

    Google Scholar 

  19. J.L. Addis, PA. Quinn, Broadband DC Level Shift Circuit With Feedback, US Patent 4 725 790, Feb. 16, 1988

    Google Scholar 

  20. J.L. Addis, Precision Differential Amplifier Having Fast Overdrive Recovery, US Patent 4 714 896, Dec. 22, 1987

    Google Scholar 

  21. J.L. Addis, Buffer Amplifier, US Patent 4 390 852, Jun. 28, 1983

    Google Scholar 

  22. J.L. Addis, Feedbeside Correction Circuit for an Amplifier, US Patent 4 132 958, Jan. 2, 1979

    Google Scholar 

  23. T.C. Hill, III, Differential Amplifier with Dynamic Thermal Balancing, US Patent 4 528 516, July 9, 1985

    Google Scholar 

  24. J. Woo, Wideband Amplifier with Active High Frequency Compensation, US Patent 4 703 285, Oct. 27, 1987

    Google Scholar 

  25. Wakimoto, Tsutomu, Azakawa, Yukio, Wideband Amplifier, US Patent 4 885 548, Dec. 5, 1989

    Google Scholar 

  26. H. Weber, A Method of Predicting Thermal Stability, Motorola, Application Note AN-128

    Google Scholar 

  27. R. Ivins, Measurement of Thermal Properties of Semiconductor Devices, Motorola, Application Note AN-226

    Google Scholar 

  28. B. Botos, Nanosecond Pulse Handling Techniques in IC Interconnections, Motorola, Application Note AN-270

    Google Scholar 

  29. Field Effect Transistors In Theory and Practice, Motorola, Application Note AN-211A

    Google Scholar 

  30. N. Freyling, FET Differential Amplifier, Motorola, Application Note AN-231

    Google Scholar 

  31. R.W. Anderson, s-Parameter Techniques for Faster, More Accurate Network Designs, Hewlett-Packard, Application Note AN-95-1

    Google Scholar 

  32. R. Gosser, Wideband Transconductance Generator (Quad-Core Amplifier), US Patent 5 150 074, Sep. 22, 1992

    Google Scholar 

  33. J. Bales, A Low Power, High Speed, Current Feedback OpAmp with a Novel Class AB High Current Output Stage, IEEE Journal of Solid-State Circuits, Vol. 32, No. 9, Sept. 1997

    Google Scholar 

  34. Development of an Extensive SPICE Macromodel for Current Feedback Amplifiers, National Semiconductor Application Note AN-840, July, 1992

    Google Scholar 

  35. Topics on Using the LM6181 — A New Current Feedback Amplifiers, National Semiconductor Application Note AN-813, March, 1992

    Google Scholar 

  36. T.T. Regan, Designing with a New Super Fast Dual Norton Amplifier, National Semiconductor Application Note AN-278, Sept., 1981

    Google Scholar 

  37. Simulation SPICE Models for Comlinear OpAmps, National Semiconductor Application Note OA-18, May, 2000

    Google Scholar 

  38. H.S. Black, Translating System, U.S.Patent 1 686 792, Oct.9, 1928

    Google Scholar 

  39. H.S. Black, Wave Translation System, U.S. Patent 2 102671, Dec. 21, 1937

    Google Scholar 

  40. H.S. Black, Inventing the Negative Feedback Amplifier, IEEE Spectrum, vol. 14, pp. 55–60, Dec, 1977

    Google Scholar 

  41. P.J. Walker, Current Dumping Audio Amplifier, Wireless World, vol. 81, pp. 560–562, Dec, 1975

    Google Scholar 

  42. P.J. Walker, M.P. Albinson, Distortion-Free Amplifiers, U.S. Patent 3 970 953, Jul. 20, 1976

    Google Scholar 

  43. J. Vanderkooy, S.P. Lipshitz, Feedforward Error Correction in Power Amplifiers, Journal of the Audio Engineering Society, vol. 28, No. 1/2, pp. 2–16, Jan./Feb., 1980

    Google Scholar 

  44. M.J. Hawksford, Distortion Correction in Audio Power Amplifiers, Journal of the Audio Engineering Society, vol. 29, No. 1/2, pp. 27–30, Jan./Feb., 1981

    Google Scholar 

  45. M.J. Hawksford, Distortion Correction Circuits for Audio Amplifiers, Journal of the Audio Engineering Society, vol. 29, No. 7/8, pp. 503–510, Jul./Aug., 1981

    Google Scholar 

  46. M.J. Hawksford, Low Distortion Programmable Gain Cell Using Current Steering Cascode Topology, Journal of the Audio Engineering Society, vol. 30, No. 11, pp. 795–799, Nov., 1982

    Google Scholar 

  47. S. Takahashi, S. Tanaka, Design and Construction of a Feedforward Error Correction Amplifier, Journal of the Audio Engineering Society, vol. 29, pp. 31–37, Jan./Feb., 1981

    Google Scholar 

  48. A.M. Sandman, Reducing amplifier distortion by error add-on, Wireless World, vol. 79, pp. 32, Jan., 1973

    Google Scholar 

  49. J.L. Addis, Versatile Analogue Chip for Oscilloscope Plug-Ins, Electronic Engineering, Aug., 1988 (Part I), Sept., 1988 (Part II)

    Google Scholar 

  50. J.L. Addis, Good Engineering and Fast Vertical Amplifiers, (J. Williams, [Editor], Analog Circuit Design, Art, Science and Personalities, Part 1) Butterworth-Heinemann, Boston, 1991

    Google Scholar 

  51. C. R. Battjes, Who Wakes the Buglar?, (J. Williams, [Editor], The Art and Science of Analog Circuit Design, Part 2) Butterworth-Heinemann, Boston, 1995

    Google Scholar 

  52. P.A. Quinn, Feed-Forward Amplifier, US Patent No. 4 146 844, Mar. 27, 1979

    Google Scholar 

  53. P.A. Quinn, Feed-Forward Amplifier, US Patent No. 4 146 844 (Reissue 31 545), Mar. 27, 1984

    Google Scholar 

  54. P.A. Quinn, Differential Impedance Neutralization Circuit, US Patent No. 4 692 712, Sep. 8, 1987

    Google Scholar 

  55. B. Gilbert, A Precise Four-quadrant Multiplier with Subnanosecond Response, IEEE Journal of Solid-State Circuits, pp. 365–373, Dec. 1968

    Google Scholar 

  56. B. Gilbert, Multiplier Circuit, US Patent No. 4 156283, May 22, 1979

    Google Scholar 

  57. B. Gilbert, High accuracy four-quadrant multiplier also capable of four-quadrant division, US Patent No. 4 586 155, April 29, 1986

    Google Scholar 

  58. B. Gilbert, Synchronous logarithmic amplifier, US Patent No. 5 298 811, March 29, 1994

    Google Scholar 

  59. B. Gilbert, Single supply analog multiplier, US Patent No. 6 074 082, June 13, 2000

    Google Scholar 

  60. B. Gilbert, Circuit having dual feedback multipliers, US Patent No. 6 456 142, September 24, 2002

    Google Scholar 

  61. B. Gilbert, Where Do Little Circuits Come From?, (J. Williams [Editor], Analog Circuit Design, Part 1) Butterworth-Heinemann, Boston, 1991

    Google Scholar 

  62. P. Gamand, C. Caux, Semiconductor device comprising a broadband and high gain monolithic integrated circuit for a distributed amplifier, US Patent No. 5,386,130, January 31, 1995

    Google Scholar 

  63. K. Nakahara, Y. Sasaki, Distributed amplifier and bidirectional amplifier, US Patent No. 5,414,387, May 9, 1995

    Google Scholar 

  64. R.W. Chick, Non-uniformly distributed power amplifier, US Patent No. 5,485,118, January 16, 1996

    Google Scholar 

  65. C.D. Motchenbacher, F.C. Fitchen, Low Noise Electronic Design, John Wiley, New York, 1973, ISBN 0-471-61950-7

    Google Scholar 

  66. E. Margan, RC Attenuator Distortion, Electronics World + Wireless World, Sept., 1992, Circuit Ideas, pp. 765

    Google Scholar 

  67. E. Margan, Amplifier Instability, Electronics World + Wireless World, Apr., 1998, pp. 311–312

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Starič, P., Margan, E. (2006). System synthesis and integration. In: Starič, P., Margan, E. (eds) Wideband Amplifiers. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-28341-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-28341-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28340-1

  • Online ISBN: 978-0-387-28341-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics