Skip to main content

Abstract

Sulfur is one of the few elements that is found in its elemental form in nature. Typical sulfur deposits occur in sedimentary limestone/gypsum formations, in limestone/anhydrite formations associated with salt domes, or in volcanic rock.1 A yellow solid at normal temperatures, sulfur becomes progressively lighter in color at lower temperatures and is almost white at the temperature of liquid air. It melts at 114–119°C (depending on crystalline form) to a transparent light yellow liquid as the temperature is increased. The low viscosity of the liquid begins to rise sharply above 160°C, peaking at 93 Pa·s at 188°C, and then falling as the temperature continues to rise to its boiling point of 445°C. This and other anomalous properties of the liquid state are due to equilibria between the various molecular species of sulfur, which includes small chains and rings.

The authors wish to acknowledge that major portions of this chapter are taken from the ninth edition version (1992) which was written by Dr Robin W. Strickland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. British Sulphur Corp: Ltd, Sulphur, No. 193, 33–36 (Nov./Dec. 1987).

    Google Scholar 

  2. International Fertilizer Industry Association, Paris, France, 2004.

    Google Scholar 

  3. (a) Sulfur Magazine, No. 259, p. 41, Nov.–Dec. 1998, Gerrie du Plessis. (b) Hyne, J. B., “The Forming, Handling and Transportation of Elemental Sulphur,” Presented at Sulphur 1990 Conference, The British Sulphur Corporation, London.

    Google Scholar 

  4. (a) Ibid, 45 (b). (b) Kemp, E., Hyne, J. B., and Rennie, W. J., “Reaction of Elemental Sulfur with Water Under U.V. Radiation,” Internat. J. Sulfur Chem., Part A1(1) 69–70 (1971).

    Google Scholar 

  5. (a) Personal communication, Pennzoil Sulphur Co. Operations at Antwerp terminal. (b) Dowling, N. J., Clark, P. D., and Hyne, J. B., “Understanding and Mitigating Corrosion During Handling and Transportation of Elemental Sulfur,” Sulphur 1996 Conference, The British Sulphur Corporation, London.

    Google Scholar 

  6. Sandvik Process Systems, Inc., 21 Campus Rd., Totowa, NJ, USA.

    Google Scholar 

  7. Berndorf Belt Systems USA, 920 Estes Avenue, Schaumburg, IL, USA.

    Google Scholar 

  8. Devco International, Inc., 6846 S. Cauton Ave., Suite 400, Tulsa, OK, USA.

    Google Scholar 

  9. Enersul, Inc., 7210 Blackfoot Tr. SE, Calgary, Alberta, Canada.

    Google Scholar 

  10. Ibid. 51.

    Google Scholar 

  11. Kaltenbach-Thuring SA, 9 Rue de l’lndustrie, 6000 Beauvais, France.

    Google Scholar 

  12. d’Aquin, G. E., Transporting Sulfur Pellets, U.S. Patent 6368029, Apr. 9, 2002.

    Google Scholar 

  13. Hyne, J. B., “Some Impurities in Elemental Sulphur-Origins and Elimination,” Sulphur 1991 Conference, The British Sulphur Corp, London.

    Google Scholar 

  14. Thieler, E., Sulphur, Theodor Steinkopff, Leipzig, 1936.

    Google Scholar 

  15. In 2001, Iraq and Poland were the only nations with operating Frasch mines.

    Google Scholar 

  16. d’Aquin, G., “North American Sulphur Perspective,” paper read at Sulphur 1998 Conference, British Sulphur Corporation, London.

    Google Scholar 

  17. d’Aquin, G., North American Quarterly Sulphur Review, Con-Sul, Inc., Tulsa, OK (Apr. 2002, Jan. 2005).

    Google Scholar 

  18. British Sulphur Corp. Ltd, Sulphur, No. 193, 26–30 (Nov./Dec. 1987).

    Google Scholar 

  19. British Sulphur Corp. Ltd, Sulphur, No. 192, 30–39 (Sept./Oct. 1987).

    Google Scholar 

  20. Rameshi, M., “State of the Art in Gas Treating,” Sulphur 2000 Conference, The British Sulphur Corporation, London.

    Google Scholar 

  21. Ober, J., Sulfur—2000 Annual Report, Mineral Industry Surveys, U.S. Geological Survey, U.S. Dept of the Interior, Reston, VA.

    Google Scholar 

  22. Ober, J., Sulfur—1991 Annual Report, Mineral Industry Surveys, U.S. Bureau of Mines, U.S. Dept of the Interior; Ober J., Sulfur—2003 Annual Report, Mineral Industry Surveys, U.S. Gedogical Survey, US. Dept. of the Interior.

    Google Scholar 

  23. d’Aquin, G., North American Quarterly Sulfur Review, Con-Sul, Inc. Tulsa, OK (Jan. 2005).

    Google Scholar 

  24. Ober, J., Op. Cit.

    Google Scholar 

  25. Sohn, H. Y., George, D. B., and Zunkel, A. D., Advances in Sulfide Smelting, The Metallurgical Society of AIME, Warrendale, PA, 1983.

    Google Scholar 

  26. British Sulphur Corp. Ltd, Sulphur, No. 190, 33–40 (May/June 1987).

    Google Scholar 

  27. Bhambri, N., Fell, R. C., Fries, R. M., and Ritschel, P. M., “Metallurgical Sulfuric Acid Plants for the New Millennium,” Sulphur 98 Conference, British Sulphur Corporation, London.

    Google Scholar 

  28. Sander, U. H. F., Fischer, H., Rothe, U., and Kola, R. Sulphur, Sulphur Dioxide, and Sulphuric Acid, Verlag Chemie, Weinheim, 1984.

    Google Scholar 

  29. Friedman, L., “The Sulfuric Acid Plant Recent Advances—Reviews and Analysis,” paper read at the AIChE Central Florida Meeting, Clearwater, FL, June 2, 1988.

    Google Scholar 

  30. British Sulphur Corp. Ltd, Sulphur, No. 203, 24–32 (July/Aug. 1990).

    Google Scholar 

  31. British Sulphur Corp. Ltd, Sulphur, No. 207, 37–41 (Mar./Apr. 1990).

    Google Scholar 

  32. Davies, M., Hodgson, D. S., and Rodda, J. “Applications of SARAMET in H2SO4 Plants,” paper read at Sulphur 88, Vienna, Austria, Nov. 6–9, 1988.

    Google Scholar 

  33. Douren, L., “Sandvik SX—The Future Material for Concentrated Sulfuric Acid,” paper read at Sulphur 87, Houston, TX, Apr. 5–8, 1987.

    Google Scholar 

  34. Holdschick, H., and Jurascheck, M. A., “Advances in the Development of Cast Materials for High Concentrated Sulphuric Acid at Temperatures up to 280°C,” paper read at Sulphur 88, Vienna, Austria, Nov. 6–9, 1988.

    Google Scholar 

  35. Puricelli, S., Fell, R. C., and Randolph, D. R., “The State of Sulfuric Acid Technology,” AIChE meeting, Clearwater, FL, May, 2000.

    Google Scholar 

  36. McAlister, D. R., Grendel, R. W., Schneider, D. R., Shafer, J. R., and Tucker, J. S., “A Sulfuric Acid Plant for the 1990s,” paper read at Sulphur 1990, Cancun, Mexico, Apr. 1–4, 1990.

    Google Scholar 

  37. Blicharz, M., “Different Methods of Sulphur Removal from Gas from Non-ferrous Metal Works,” paper read at Sulphur 88, Vienna, Austria, Nov. 6–9, 1988.

    Google Scholar 

  38. Shafer, J. R., “Namhae Heat Recovery System Update,” paper read at Fertilizer Industry Round Table, Baltimore, MD, Nov. 15, 1988.

    Google Scholar 

  39. Smith, R. M., Sheputis, J., Kirn, U. B., and Chin, Y. B., “Sulfuric Acid Heat Recovery System (HRS) Operations at Namhae Chemical Corporation, Korea,” paper read at Sulphur 88, Vienna, Austria, Nov. 6–9, 1988.

    Google Scholar 

  40. Lebel, G., “Pilot Plant Development of the Chemetics TiO2 Waste Acid Recovery Process,” paper read at Sulphur 1990, Cancun, Mexico, Apr. 1–4, 1990.

    Google Scholar 

  41. British Sulphur Corp. Ltd, Sulphur, No. 253, 67–69 (Nov./Dec. 1997).

    Google Scholar 

  42. The British Sulphur Corp. Ltd, World Sulphur and Sulphuric Acid Atlas, 5th ed., Purley Press Ltd, London, 1989.

    Google Scholar 

  43. Duecker, W. W., and West, J. R. (Eds.), The Manufacture of Sulfuric Acid, Van Nostrand Reinhold, New York, 1959.

    Google Scholar 

  44. Fairlie, A. M., Sulfuric Acid Manufacture, Reinhold, New York, 1936.

    Google Scholar 

  45. Heydorn, B., Aguiar, D., and Ferguson, A., “Sulfuric Acid,” in Chemical Economics Handbook, SRI International, Menlo Park, CA, 1987.

    Google Scholar 

  46. Matros, Y. S., and Bunimovich, G. A., “Reverse Process of SO2 Oxidation in Sulfuric Acid Production,” paper read at Sulphur 1990, Cancun, Mexico, Apr. 1–4, 1990.

    Google Scholar 

  47. Wyld, W., Sulphuric Acid and Sulphur Dioxide Raw Materials, D. Van Nostrand, New York, 1923.

    Google Scholar 

  48. Polk, P. (Topsoe Houston, Tx) e-mail to Fell, R.C. Feb 3, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

James A. Kent Ph.D. (Professor of Chemical Engineering and Dean of Engineering)

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

d’Aquin, G.E., Fell, R.C. (2007). Sulfur and Sulfuric Acid. In: Kent, J.A. (eds) Kent and Riegel’s Handbook of Industrial Chemistry and Biotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-27843-8_25

Download citation

Publish with us

Policies and ethics