Skip to main content

Part of the book series: Advances in Information Security ((ADIS,volume 33))

Abstract

Today’s globally networked society places great demand on the dissemination and sharing of information, which is probably becoming the most important and demanded resource. While in the past released information was mostly in tabular and statistical form (macrodata), many situations call today for the release of specific data (microdata), Microdata, in contrast to macrodata reporting precomputed statistics, provide the convenience of allowing the final recipient to perform on them analysis as needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal C (2005). On κ-anonymity and the curse of dimensionality. In Proc. of the 31 st International Conference on Very Large Data Bases (VLDB’05), Trondheim, Norway.

    Google Scholar 

  2. Aggarwal G, Feder T, Kenthapadi K, Motwani R, Panigrahy R, Thomas D, Zhu A (2005). Anonymizing tables. In Proc. of the 10th International Conference on Database Theory (ICDT’05), pp. 246–258, Edinburgh, Scotland.

    Google Scholar 

  3. Aggarwal G, Feder T, Kenthapadi K, Motwani R, Panigrahy R, Thomas D, Zhu A (2005). Approximation algorithms for κ-anonymity. Journal of Privacy Technology, paper number 20051120001.

    Google Scholar 

  4. Anderson R (1996). A security policy model for clinical information systems. In Proc. of the 1996 IEEE Symposium on Security and Privacy, pp. 30–43, Oakland, CA, USA.

    Google Scholar 

  5. Bayardo RJ, Agrawal R (2005). Data privacy through optimal κ-anonymization. In Proc. of the 21st International Conference on Data Engineering (ICDE’05), pp. 217–228, Tokyo, Japan.

    Google Scholar 

  6. Bettini C, Wang XS, Jajodia S (2005). Protecting privacy against location-based personal identification. In Proc. of the Secure Data Management, Trondheim, Norway.

    Google Scholar 

  7. Jajodia S, Yao C, Wang XS (2005). Checking for κ-anonymity violation by views. In Proc. of the 31st International Conference on Very Large Data Bases (VLDB’05), Trondheim, Norway.

    Google Scholar 

  8. Dobson J, Jajodia S, Olivier M, Samarati P, Thuraisingham B (1998). Privacy issues in www and data mining. In Proc. of the 12th IFIP WG11.3 Working Conference on Database Security, Chalkidiki, Greece. Panel notes.

    Google Scholar 

  9. Domingo-Ferrer J, Mateo-Sanz JM (2002). Practical data-oriented microaggregation for statistical disclosure control. IEEE Transactions on Knowledge and Data Engineering, 14(1):189–201.

    Article  Google Scholar 

  10. Duncan GT, Jabine TB, de Wolf VA editors (1993). Private Lives and Public Policies. National Academy Press.

    Google Scholar 

  11. Franconi L, Polettini S (2004). Individual risk estimation in μ-ARGUS: a review. In Domingo-Ferrer J and Torra V, editors, Privacy in Statistical Databases, vol. 3050 of LNCS, pp. 262–372. Springer, Berlin Heidelberg.

    Google Scholar 

  12. Fung B, Wang K, Yu P (2005). Topdown specialization for information and privacy preservation. In Proc. of the 21st International Conference on Data Engineering (ICDE’05), Tokyo, Japan.

    Google Scholar 

  13. Garey M, Johnson D (1979). Computers and Intractability. Freeman and Company.

    Google Scholar 

  14. Gedik B, Liu L (2005). A customizable κ-anonymity model for protecting location privacy. In Proc. of the 25th International Conference on Distributed Computing Systems (IEEE ICDCS), Columbus, Ohio, USA.

    Google Scholar 

  15. Hughes D, Shmatikov V (2004). Information hiding, anonymity and privacy: a modular approach. Journal of Computer Security, 12(1):3–36, 2004.

    Google Scholar 

  16. Hundepool A, Van deWetering A, Ramaswamy R, Franconi L, Capobianchi A, De-Wolf PP, Domingo-Ferrer J, Torra V, Brand R, Giessing S (2003). μ-ARGUS version 3.2 software and user’s manual. Statistics Netherlands. http://neon.vb.cbs.nl/casc.

    Google Scholar 

  17. Hundepool A, Willenborg L (1996). μ-and τ-ARGUS: software for statistical disclosure control. In Proc. of the 3rd International Seminar on Statistical Confidentiality, Bled.

    Google Scholar 

  18. Iyengar V (2002). Transforming data to satisfy privacy constraints. In Proc. of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 279–288, Edmonton, Alberta, Canada.

    Google Scholar 

  19. Jiang W, Clifton C (2005). Privacy-preserving distributed κ-anonymity. In Proc. of the 19th Annual IFIP WG 11.3 Working Conference on Data and Applications Security, Storrs, CT, USA.

    Google Scholar 

  20. LeFevre K, DeWitt DJ, Ramakrishnan R (2005). Incognito: Efficient full-domain κ-anonymity. In Proc. of the 24th ACM SIGMOD International Conference on Management of Data, pp. 49–60, Baltimore, Maryland, USA.

    Google Scholar 

  21. LeFevre K, DeWitt DJ, Ramakrishnan R (2005). Multidimensional κ-anonymity. Technical Report 1521, Department of Computer Sciences, University of Wisconsin, Madison, USA.

    Google Scholar 

  22. LeFevre K, DeWitt DJ, Ramakrishnan R (2006). Mondrian multidimensional κ-anonymity. In Proc. of the International Conference on Data Engineering (ICDE’06), Atlanta, GA, USA.

    Google Scholar 

  23. Machanavajjhala A, Gehrke J, Kifer D (2006). ℓ-diversity: Privacy beyond κ-anonymity. In Proc. of the International Conference on Data Engineering (ICDE’06), Atlanta, GA, USA.

    Google Scholar 

  24. Meyerson A, Williams R (2004). On the complexity of optimal κ-anonymity. In Proc. of the 23rd ACM-SIGMOD-SIGACT-SIGART Symposium on the Principles of Database Systems, pp. 223–228, Paris, France.

    Google Scholar 

  25. Oganian A, Domingo-Ferrer J (2001). On the complexity of optimal microaggregation for statistical disclosure control. Statistical Journal of the United Nations Economic Comission for Europe, 18(4):345–354.

    Google Scholar 

  26. Samarati P (2001). Protecting respondents’ identities in microdata release. IEEE Transactions on Knowledge and Data Engineering, 13(6): 1010–1027.

    Article  Google Scholar 

  27. Samarati P, Sweeney L (1998). Generalizing data to provide anonymity when disclosing information (Abstract). In Proc. of the 17th ACM-SIGMOD-SIGACT-SIGART Symposium on the Principles of Database Systems, p. 188, Seattle, WA, USA.

    Google Scholar 

  28. Sweeney L (1997). Guaranteeing anonymity when sharing medical data, the Datafly system. In Journal of the American Medical Informatics Association, Washington, DC: Hanley & Belfus, Inc.

    Google Scholar 

  29. Sweeney L (2002). Achieving κ-anonynity privacy protection using generalization and suppression. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):571–588.

    Article  MATH  MathSciNet  Google Scholar 

  30. von Ahn L, Bortz A, Hopper NJ (2003). κ-anonymous message transmission. In Proc. of the 10th ACM Conference on Computer and Communications Security, pp. 122–130, Washington, DC, USA.

    Google Scholar 

  31. Wang K, Fung B, Dong G (2005). Integrating private databases for data analysis. In Kantor P et al., editor, ISI 2005, vol. 3495 of LNCS, pp. 171–182. Springer-Verlag.

    Google Scholar 

  32. Wang K, Yu P, Chakraborty S (2004). Bottom-up generalization: a data mining solution to privacy protection. In Proc. of the 4th International Conference on Data Mining (ICDM’04), Brighton, UK.

    Google Scholar 

  33. Winkler WE (2002). Using simulated annealing for κ-anonymity. Technical Report 7, U.S. Census Bureau.

    Google Scholar 

  34. Winkler WE (2004). Masking and re-identification methods for public-use microdata: Overview and research problems. In Domingo-Ferrer J, editor, Privacy in Statistical Databases 2004. Springer, New York.

    Google Scholar 

  35. Woodward B (1995). The computer-based patient record confidentiality. The New England Journal of Medicine, 333(21):1419–1422.

    Article  Google Scholar 

  36. Xu S, Yung M (2004). κ-anonymous secret handshakes with reusable credentials. In Proc. of the 11th ACM Conference on Computer and Communications Security, pp. 158–167, Washingtion, DC, USA.

    Google Scholar 

  37. Yao G, Feng D (2004). A new κ-anonymous message transmission protocol. In Proc. of the 5th International Workshop on Information Security Applications,(WISA’04), pp. 388–399, Jeju Island, Korea.

    Google Scholar 

  38. Zhong S, Yang Z, and Wright R (2005). Privacy-enhancing κ-anonymization of customer data. In Proc. of the 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS’05), pp. 139–147, Baltimore, Maryland, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ciriani, V., De Capitani di Vimercati, S., Foresti, S., Samarati, P. (2007). κ-Anonymity. In: Yu, T., Jajodia, S. (eds) Secure Data Management in Decentralized Systems. Advances in Information Security, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-27696-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-27696-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-27694-6

  • Online ISBN: 978-0-387-27696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics