Skip to main content
  • 2276 Accesses

6.6 Conclusions

Among machining processes such as turning, milling, drilling, and grinding, the latter started as a precision process, achieved high precision status with superabrasives, and became an ultraprecision technique with development of rigid machine tools. It competes with ultraprecision diamond turning and is no longer labeled as random processes at the ultraprecision level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McKeown PA, (1987), The Role of Precision Engineering in Manufacturing of the Future, Annals of the CIRP, 36(2), 495–501.

    Google Scholar 

  2. Taniguchi N, (1994), The State of the Art of Nanotechnology for Processing of Ultraprecision and Ultrafine Products, Precision Engineering, 16(1), 5–24.

    Article  Google Scholar 

  3. Venkatesh VC, Chandrasekaran, H., (1987), Experimental Techniques in Metal Cutting, New Delhi: Prentice-Hall of India Ltd.

    Google Scholar 

  4. McKeown PA, (1995a), High Precision Manufacturing in an Advanced Industrial Economy, Nanyang Technological University, Singapore.

    Google Scholar 

  5. Yan J, Syoji K, Kuriyagawaa, T. and Suzuki, H., (2002a), Ductile Regime Turning At Large Tool Feed, Journal of Materials Processing Technology, 121, 363–372.

    Article  Google Scholar 

  6. Schinker MG, (1991), Subsurface Damage Mechanisms at High-Speed Ductile Machining of Optical Glasses, Precision Engineering, 13(3), 208–218.

    Article  Google Scholar 

  7. Komanduri R, (1996), On Material Removal Mechanisms in Finishing of Advanced Ceramics and Glasses, Annals of the CIRP, 45(1), 509–513.

    Google Scholar 

  8. Namba Y and Abe M, (1993) Ultraprecision Grinding of Optical Glasses to Produce Super-Smooth Surfaces, Annals of the CIRP, 42(1), 417–420.

    Google Scholar 

  9. Puttick KE, Rudman MR, Smith KJ, Franks A and Lindsay K, (1989), Single-point Diamond Machining of Glasses, Proc. Royal. Society. London., A426, 19–30.

    Article  Google Scholar 

  10. Anon.(1998). [On-line] Available at http://www.predev.com/smg/specification.htm

    Google Scholar 

  11. Anon.(1998). [On-line] Available at http://www.roymech.co.uk/Useful_Tables/JSO_Tolerances/ISO_LIMITS.htm

    Google Scholar 

  12. Zhong Z and Venkatesh VC, (1995), Semi-Ductile Grinding and Polishing of Ophthalmic Aspherics and Spherics, Annals of the CIRP, 44(1), 339–342.

    Google Scholar 

  13. Morris JC, Callahan DL, Kulik J, Patten JA and Scattergood RO (1995). Origins of the Ductile Regime in Single-Point Diamond Turning of Semiconductors. Journal of the American Ceramic. Society. 78(8): 2015–2020.

    Article  Google Scholar 

  14. Ikawa N, Donaldson RR, Komanduri R, Konig W, Aachen TH, McKeown PA, Moriwaki T and Stowers IF, (1991), Ultraprecision Metal Cutting — The Past, the Present and the Future, Annals of the CIRP, 40(2), 587–594.

    Google Scholar 

  15. Fang FZ, Liu XD and Lee LC, (2003), Micro-Machining of Optical Glasses — A Review of Diamond-Cutting Glasses, SADHANA, 28(5), 945–955.

    Google Scholar 

  16. Namba T, Kobayashi H, Suzuki H and Yamashita K, (1999), Ultraprecision Surface Grinding of Chemical Vapor Deposited Silicon Carbide for X-Ray Mirrors using Resinoid-Bonded Diamond Wheels, Annals of the CIRP, 48(1), 277–280.

    Google Scholar 

  17. Ohmori H and Nakagawa T, (1995), Analysis of Mirror Surface Generation of Hard and Brittle Materials by ELID Grinding with Superfine Grain Metallic Bond Wheels, Annals of the CIRP. 44(1): 287–290.

    Google Scholar 

  18. Blake PN and Scattergood RO, (1990), Ductile Regime Machining of Germanium and Silicon, Journal of the American Ceramic. Society. 73(4): 949–957.

    Article  Google Scholar 

  19. Blackley WS and Scattergood RO (1991). Ductile-Regime Machining Model for Diamond Turning of Brittle Materials. Precision Engineering. 13(2): 95–103.

    Article  Google Scholar 

  20. Bifano TG, Dow TA and Scattergood RO (1991). Ductile-Regime Grinding: A New Technology for Machining Brittle Materials. Trans. ASME. Journal of Engineering for Industry. 113: 184–189.

    Article  Google Scholar 

  21. Lindberg RA (1970). Processes and Materials of Manufacture. New Delhi: Prentice Hall of India Ltd.

    Google Scholar 

  22. HMT Rao, (1980). Production Technology. New Delhi: Tata McGraw Hill Publishing Company Limited.

    Google Scholar 

  23. Kalpakjian S, Schmid S (2001). Manufacturing Engineering and Technology. 4th edition, by Prentice Hall Inc, Upper Saddle River, NJ.

    Google Scholar 

  24. Rao PN (2000). Manufacturing Technology: Metal Cutting & Machine Tools. Tata New Delhi: McGraw-Hill Publishing Company Limited.

    Google Scholar 

  25. Cook NH (1966). Manufacturing Analysis. Addison-Wesley Publishing Co. Inc.

    Google Scholar 

  26. Pearce CA (1972). Silicon Chemistry and Applications. London: The Chemical Society.

    Google Scholar 

  27. Stephenson DA and Agapiou JS (1997). Metal Cutting Theory and Practice. New York: Marcel Dekker, Inc.

    Google Scholar 

  28. Anon. (1996a). Schott Optical Glass Properties. Pocket Catalogue.

    Google Scholar 

  29. Malkin S (1989). Grinding Technology: Theory and Application of Machining with Abrasives. England: Ellis Horwood Limited.

    Google Scholar 

  30. Savington D (2001). Maximizing the Grinding Process. SME technical paper. MR01-140:1–12.

    Google Scholar 

  31. Subramaniam K and Ramanath P. (1991). Principles of Abrasive Machining. Ceramics and Glasses. Engineered Materials Handbook, 4, ASM International, The Materials Information Society, 316.

    Google Scholar 

  32. Hensz RR (1969). Glass Grinding and Polishing. SME Technical paper. MR69-230:1–11.

    Google Scholar 

  33. Dunnington BW (1978). Diamonds for Abrasive Machining, Lapping, Polishing and Finishing. SME Technical Paper. MR78-955:1–8.

    Google Scholar 

  34. Bhateja C, Lindsay R, Grinding theory and techniques and troubleshooting, published by Society of Manufacturing Engineers, 1982 Dearborn, MI.

    Google Scholar 

  35. Kibbe RR, Neely JE, Meyer RO and White WT (1987). Machine Tool Practices. 3rd edition. John Wiley & Sons.

    Google Scholar 

  36. Xu X, Yu Y and Huang, H (2003). Mechanisms of Abrasive Wear in the Grinding of Titanium (TC4) and Nickel (K417) Alloys. Wear. 255: 1421–1426.

    Article  Google Scholar 

  37. Holz R and Sauren J (1988). Grinding with Diamond and CBN. WINTER Diamond and CBN Tools Catalogue. Ernst Winter & Sohn Diamantwerkzeuge GmbH & Co.

    Google Scholar 

  38. Lindberg RA (1990). Processes and Materials of Manufacture. 4th edition, Prentice Hall, Inc. NJ.

    Google Scholar 

  39. Inasaki I, Tonshoff HK and Howes TD (1993). Abrasive Machining in the Future. Annals of the CIRP. 42(2): 723–732.

    Google Scholar 

  40. Aurich JC, Braun O and Wernecke G (2003). Development of a Superabrasive Grinding Wheel with Defined Grain Structure using Kinematic Simulation. Annals of the CIRP. 52(1): 275–280.

    Google Scholar 

  41. Anon. (2002). Tech Front: Defining Grinding Grains. Manufacturing Engineering. 6:24.

    Google Scholar 

  42. Shaw MC (1984). Metal Cutting Principles. Oxford University Press, NY, 1984.

    Google Scholar 

  43. Anon (2002a). Noritake diamond grinding catalogue.

    Google Scholar 

  44. Anon. (2005). [On-line] Available at http://www.zsmec.net/product3-l.htm

    Google Scholar 

  45. Boothroyd G (1981). Fundamentals of Metal Machining and Machine Tools. International Student Edition. Tokyo: McGraw-Hill International Book Company.

    Google Scholar 

  46. Donaldson C, LeCain GH and Goold VC (1973). Tool Design. 3rd edition. McGraw-Hill Book Company, NY.

    Google Scholar 

  47. Anon. (1995a). Diamond Tools and CBN Tools for Internal Grinding Catalogue. Ernst Winter & Sohn Diamantwerkzeuge GmbH & Co., Germany.

    Google Scholar 

  48. Anon. (1995b). Material Removal, Industrial Tooling Catalogue. Greenfield Industries, USA.

    Google Scholar 

  49. Anon. (2004). http://www.schott.com/english/news/pictures.html.

    Google Scholar 

  50. Anon. (2001). Tools & Industrial Supplies. Cromwell-Tools Catalogue.

    Google Scholar 

  51. Subramanian K and Tricard M (1995). Future Directions for the Grinding of Ceramics. Supergrind’95-Grinding and Polishing with Superabrasives, CT: 5–31.

    Google Scholar 

  52. Krar, Ratterman (1990) Superabrasives: Grinding and machining with CBN and Diamond, Glencoe/McGraw-Hill, USA

    Google Scholar 

  53. DeGarmo PE, Black JT, Kohser RA, (2002), Materials and processes in manufacturing, 9th Edition, Macmillan Publishing Company, New York

    Google Scholar 

  54. Metzger JL, Superabrasive grinding, Butterworth and Co. Ltd., 1986

    Google Scholar 

  55. Dallas DB, (2000) Tools and Manufacturing Engineering Handbook, SME, USA

    Google Scholar 

  56. Moore WR, Foundations of Mechanical Accuracy, 800 Union Avenue, Bridgeport CT 06607, 1974.

    Google Scholar 

  57. Venkatesh VC, and Izman S, 2003, Application for Malaysian Patent for invention of novel diamond wheel filed on 30th January 2003. No. PI 20030326.

    Google Scholar 

  58. Lindburg RA Processes and materials of manufacture, Allyn and Bacow Inc, Boston, 1964, p859

    Google Scholar 

  59. Venkatesh VC, S Izman 2003. Ductile streaks in precision grinding of hard and brittle materials, Sadhana, 28,5, October 2003, 915–924.

    Google Scholar 

  60. Lindburg RA, Lecture at Ford Foundation Summer School, PSG college of Technology, Coimbatore, India, June 1965.

    Google Scholar 

  61. Venkatesh VC, and Izman S, Konneh M, Ultraprecision and high precision turning and grinding of brittle materials. Universiti Teknology Malaysia

    Google Scholar 

  62. Mon TT, 2003, Chemical mechanical polishing of optical glass subjected to partial ductile grinding, M.Eng. Thesis, Universiti Teknologi Malaysia.

    Google Scholar 

  63. Ohmori H and Nakagawa T (1990). Mirror Surface Grinding of Silicon Wafers with Electrolytic In-Process Dressing. Annals of the CIRP. 39(1): 329–332.

    Google Scholar 

  64. Rahman M, Senthil Kumar S, Lim HS, Fatima K (2003) Nano finish grinding of brittle materials using electrolytic in-process dressing (ELID) technique, Sadhana, 28,(5) 957–974

    Google Scholar 

  65. Bandyopadhyay BP, Ohmori H and Takahashi I. (1997). Efficient and Stable Grinding of Ceramics by Electrolytic In-Dressing (ELID). Journal of Materials Processing Technology. 66: 18–24.

    Article  Google Scholar 

  66. Itoh N and Ohmori H (1996). Grinding Characteristics of Hard and Brittle Materials by Fine Grain Lapping Wheels with ELID. Journal of Materials Processing Technology. 62: 315–320.

    Article  Google Scholar 

  67. Qian J, Ohmori, H and Lin W (2001). Internal Mirror Grinding with a Metal/Metal-Resin Bonded Abrasive Wheel. International Journal of Machine Tools & Manufacture. 41:193–208.

    Article  Google Scholar 

  68. Murata R, Okano K and Tsutsumi C (1985). Grinding of Structural Ceramics. Milton C. Shaw ASME Grinding Symposium PED. 16:261–272.

    Google Scholar 

  69. Zhang C, Ohmori H and Li W (2000). Small-Hole Machining of Ceramic Material with Electrolytic Interval-Dressing (ELID-II) Grinding. Journal of Material Processing Technology. 105: 284–293.

    Article  Google Scholar 

  70. Chen H, Li J, Spence J and Li JCM (2000). An ELID-cutting saw. Journal of Materials Processing Technology. 102: 208–214.

    Article  Google Scholar 

  71. Jeff Ruckman, A Tutorial on Deterministic Microgrinding News letter of Center for Optics Manufacturing Convergence Vol 7 number 6, Nov/Dec 1999.

    Google Scholar 

  72. Kapoor A (1993). A Study on Mechanism of Aspheric Grinding of Silicon. Tennessee Technological University, USA: M.Sc. Thesis.

    Google Scholar 

  73. Tan CP (1990). Aspheric Surface Grinding and Polishing of Thermal Imaging Materials. Tennessee Technological University, Cookville, USA: M.Sc. Thesis.

    Google Scholar 

  74. Rusell RG (1993) Comparison of metal and resinoid bonded grinding wheels with various grit sizes in the aspheric surface generation of silicon lenses. Tennessee Technological University, USA: M.Sc. Thesis.

    Google Scholar 

  75. Zhong Z and Venkatesh VC (1995). Semi-Ductile Grinding and Polishing of Ophthalmic Aspherics and Spherics. Annals of the CIRP. 44(1): 339–342.

    Google Scholar 

  76. Darryl Meister July 1998, Lens Talk, Sola technical marketing Vol 26 No 25.

    Google Scholar 

  77. Horne DF (1983). Optical Production Technology. 2nd edition. Bristol: Adam Hilger Ltd.

    Google Scholar 

  78. Van Ligten RF and Venkatesh VC (1985). Diamond Grinding of Aspheric Surfaces on a CNC 4-Axis Machining Center. Annals of the CIRP. 34(1): 295–298.

    Google Scholar 

  79. Anon. (2005). [On-line] Available at http://www.hkpc.org/optics/polishing.html#advanced_grinding

    Google Scholar 

  80. Fang FZ and Chen LJ (2000). Ultra-Precision Cutting of ZKN7 Glass. Annals of the CIRP. 49(1): 17–20.

    MathSciNet  Google Scholar 

  81. Namba Y, Wada R, Unno K, Tsuboi A (1989). Ultra-precision Surface Grinder Having a Glass-Ceramic Spindle of Zero-Thermal Expansion. Annals of the CIRP. 38(1):331–334.

    Google Scholar 

  82. Venkatesh VC (1999). Diamonds in Manufacturing, SME Student Chapter (UTM) Year Book 1999.

    Google Scholar 

  83. Chapman G (2003). Enabling Technologies for Ultra-Precision Manufacturing & Metrology. Presented on 18 January 2003 at the Faculty of Mechanical Engineering, Universiti Teknologi Malaysia.

    Google Scholar 

  84. Schulz H, and Moriwaki T (1992). High-speed Machining. Annals of the CIRP. 41(2): 637–643.

    Google Scholar 

  85. Komanduri R, Lucca DA and Tani Y (1997). Technological Advances in Fine Abrasive Processes. Annals of the CIRP. 46(2): 545–596.

    Article  Google Scholar 

  86. Momochi T, Masahide K, Limura Y, One day Toshiba seminar, Kolej Universiti Teknologi Kebangsaan Malaysia, High-Speed High precision machining 2002.

    Google Scholar 

  87. Precitech catalogue (2000).

    Google Scholar 

  88. Ong NS, Venkatesh VC Semi ductile grinding and polishing of Pyrex glass, Journal of Materials Processing Technology 83 (1996) 261–266.

    Article  Google Scholar 

  89. Moore catalogue (2000).

    Google Scholar 

  90. McKeown PA, Carlisle K, Shore P and Read, R.F.J. (1990). Ultra-precision, High Stiffness, CNC Grinding Machines for Ductile Mode Grinding of Brittle Materials, Infrared Technology and Applications. SPIE 1320:301–313.

    Google Scholar 

  91. Jackson MJ, Hyde LJ, Modal analysis of tetrahedral machine tool structure, ICAMT 2004, Kuala Lumpur 11–13 May 2004 pp. 394–400.

    Google Scholar 

  92. Venkatesh VC, Izman S, Bauer E, Oles E, Mon TT, M. Konneh, Failure analysis of IC chip using novel technique, ICAMT 2004, Kuala Lumpur 11–13 May 2004 pp. 294–299.

    Google Scholar 

  93. Woon KS, 2003, Binderless grinding wheel for failure analysis of silicon die on IC chips, B.Eng Thesis, Universiti Teknologi Malaysia.

    Google Scholar 

  94. Tang KF, 2003, Novel grinding process for failure analysis of IC chip packaging, B.Eng Thesis, Universiti Teknologi Malaysia.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Microgrinding. In: Micro and Nanomanufacturing. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-26132-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-26132-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25874-4

  • Online ISBN: 978-0-387-26132-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics