Skip to main content

Manufacturing High Aspect Ratio Microstructures

  • Chapter
Micro and Nanomanufacturing
  • 2225 Accesses

3.14 Conclusions

Etching of microstructures made from silicon-based materials is a well-established process. However, it has limitations in terms of being too slow for mass production and is limited to the type of substrate being etched. Therefore, etching of silicon-based materials can be considered a microfabrication process. Micro-manufacturing of microstructures can be achieved by mechanically machining substrates from engineering materials, or by mechanically machining molds for use in the mass production of microstructures made from polymeric materials.

Micro-molding of thermoplastic polymers today is a well-established process. Several micro-molding machines are sold on the market and mold inserts fabricated with various techniques suitable for most applications are available. Micro-molding can be classified as a micro-manufacturing process. Further research work will focus on achieving higher aspect ratios on larger scales and on developing special functionalities of molded parts, such as through holes and electrical paths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elwenspoek J and Jansen H, Silicon Micromachining, Cambridge University Press, 1998, Cambridge, U.K.

    Google Scholar 

  2. Hanemann T, Heckele M and Piotter V, 2000, Current status of micromolding technology, Polym. News, 25, 224–9.

    Google Scholar 

  3. Wallrabe U, Dittrich H, Friedsam G, Hanemann Th, Mohr J, Müller K, Piotter V, Ruther P, Schaller Th and Zißler W, 2002, Micro-molded easy-assembly multi fiber connector: RibCon, Microsyst. Technol., 8, 83–7.

    Article  Google Scholar 

  4. Ehrfeld W, Bley P, Götz F, Hagmann P, Maner A, Mohr J, Moser H O, Münchmeyer D, Schelb W, Schmidt D and Becker E W 1987 Fabrication of microstructure using the LIGA process Proc. IEEE Micro-Robots and Teleoperators Workshop (Hyannis, Cape Cod, MA, 9–11 Nov. 1987), ed. K J Gabriel and W S N Trimmer, IEEE Catalogue Number 87TH0204-8.

    Google Scholar 

  5. Hagmann P, Ehrfeld W and Vollmer H, 1987, Fabrication of microstructures with extreme structural heights by reaction injection molding, First Meeting of the European Polymer Federation European Symp. On Polymeric Materials, (Lyon, France, 14–18 Sept.), paper EPD05.

    Google Scholar 

  6. Heckele M, Bacher W and Müller K D, 1998, Hot embossing-the molding technique for plastic microstructures, Microsyst. Technol., 4, 122–4.

    Article  Google Scholar 

  7. Rogge T, Rummler Z and Schomburg W K, 2002, Piezo-driven polymer microvalve manufactured by the AMANDA process, Proc. of Eurosensors XVI, (Prague, 15–18 Sept. 2002), pp 214–7.

    Google Scholar 

  8. Niggemann M, Blaesi B, Boerner V, Gombert A, Klicker M, Kuebler V, Lalanne P and Wittwer V, 2001, Periodic microstructures for large area applications generated by holography, Conf. Physics. Theory, and Applications of Periodic Structures in Optics, (San Diego, CA, 1–2 Aug. 2001), Proc. SPIE 4438, 108–15.

    Google Scholar 

  9. Jian L, Desta Y M and Goettert J, 2001, Multilevel microstructures and mold inserts fabricated with planar and oblique x-ray lithography of SU-8 negative photoresist, Conf. Micromachining and Microfabrication Process Technology VII, (San Francisco, CA, 22–24 Oct. 2001), Proc. SPIE 4557, 69–76.

    Google Scholar 

  10. O’Donnell T, McCloskey P, Brunet M, Winfield R, Mathuna S C O, Stephen A and Metev S, 2000, High aspect ratio RF coils fabricated using laser processing and micro-molding techniques, Proc. European Microelectronics Packaging and Interconnection Symposium, (Prague, Czech Republic, 18–20 June 2000), pp 169–74, ISBN: 80-238-5509-3.

    Google Scholar 

  11. Mohr J, 1998, LIGA-A technology for fabricating microstructures and microsystems, Sensors Mater., 10, 363–7.

    Google Scholar 

  12. Chung S, Hein H, Mohr J, Pantenburg J-J and Wallrabe U, 2000, LIGA technology today and its industrial applications, Proc. SPIEs Int. Conf. on Microrobotics and Microassembly II, (Boston, 5–6 Nov. 2000), Proc. SPIE 4184, 44–55.

    Google Scholar 

  13. Martynova L, Locascio L E, Gaitan M, Kramer G W, Christensen R G and MacCrehan W A, 1997, Fabrication of plastic microfiuid channels by imprinting methods, Ann. Chem., 69, 4783–9.

    Article  Google Scholar 

  14. Haines K, 1996, Development of embossed holograms, Proc. SPIE 2652, 45–52.

    Google Scholar 

  15. Heckele M, 1997, Aufbau und Betrieb einer Kleinserienfertigung von LIGA-Spektrometern, Swiss Plastics, 19, 5–9.

    Google Scholar 

  16. Shan X C and Maeda R, 2002, Development of a low-cost 8 x 8 optical switch using micro-hot embossing 2002 IEEE/LEOS Int. Conf. Optical MEMS (Lugano, Switzerland, 20–23 Aug. 2002, IEEE (2002)), pp 21–2 (Catalogue no 02EX610), ISBN: 0-7803-7595-5.

    Google Scholar 

  17. Hashiura Y, Ikehara T, Kitajima A, Goto H and Maeda R, 2001, Optical switch array based on microforming process, Conf. Device and Process Technologies for MEMS and Microelectronics (Adelaide, SA, Australia, 17–19 Dec. 2001), Proc. SPIE, 4592, 414–21.

    Google Scholar 

  18. Ulrich R, Weber H P, Chandross E A, Tomlinson W J and Franke E A, 1972, Embossed optical waveguides, Appl. Phys. Lett., 20, 213–5.

    Article  Google Scholar 

  19. Krabe D and Scheel W, 1999, Optical interconnects by hot embossing for module and PCB technology-the EOB approach, Proc. 49th Electronic Components and Technology Conference (San Diego, CA, USA, 1–4 June 1999) (Catalogue no 99CH36299), ISBN: 0-7803-5231-9, pp 1164–6.

    Google Scholar 

  20. David C, Haberling P, Schnieper M, Sochtig J and Zschokke C, 2002, Nano-structured anti-reflective surfaces replicated by hot embossing, Microelectron. Eng., 61–62, 435–40.

    Article  Google Scholar 

  21. Knop K 1976, Color pictures using the zero diffraction order of phase grating structures, Opt. Commun., 18, 298–303.

    Article  Google Scholar 

  22. Grigaliunas V, Kopustinskas V, Meskinis S, Margelevicius M, Mikulskas I and Tomasiunas R, 2001, Replication technology for photonic band gap applications, Conf. Optoelectronics I, Materials and Technologies for Optoelectronics Devices, Symposium G of the 2000 E-MRS-IUMRS-ICEM Spring Conf, (Strasbourg, France, 20 May–2 June 2000), Opt. Mater., 17, 15–8.

    Article  Google Scholar 

  23. Olsson A, Larsson O, Horn J, Lundbladh L, Öhman O and Stemme G, 1997, Valve-less diffuser micropumps fabricated using thermoplastic replication, Proc. IEEE Tenth Annu. Int. Workshop on Micro-Electro Mechanical Systems, MEMS’97 (Nagoya, Japan, 26–30 Jan. 1997), pp 305–10.

    Google Scholar 

  24. Schomburg W K, Ahrens R, Bacher W, Martin J and Saile V, 1999, AMANDA-Surface micromachining, molding, and diaphragm transfer, Sensors Actuators A, 76, 343–8.

    Article  Google Scholar 

  25. Döpper J, Clemens M, Ehrfeld W, Kämper K-P and Lehr H, 1996, Development of low-cost injection molded micropumps, Actuator’96: Proc. Fifth Int. Conf. on New Actuators, pp 37–40.

    Google Scholar 

  26. Fahrenberg J, Bier W, Maas D, Menz W, Ruprecht R and Schomburg W K, 1995, Microvalve system fabricated by thermoplastic molding, J. Micromech. Microeng., 5, 169–71.

    Article  Google Scholar 

  27. Goll C, Bacher W, Büstgens B, Maas D, Menz W and Schomburg W K, 1996, Microvalves with bistable buckled polymer diaphragms, J. Micromech. Microeng., 6, 77–9.

    Article  Google Scholar 

  28. Goll C, Bacher W, Büstgens B, Maas D, Ruprecht R and Schomburg W K, 1997, Electrostatically actuated polymer microvalve equipped with a movable membrane electrode, J. Micromech. Microeng., 7, 224–6.

    Article  Google Scholar 

  29. Gerlach A, Knebel G, Guber A, Heckele M, Herrmann D, Muslija A and Schaller T, 2002, Microfabrication of single-use plastic microfluidic devices for high-throughput screening and DNA analysis, Microsyst. Technol., 7, 265–8.

    Article  Google Scholar 

  30. Rummler Z, Berndt M, Härtl H-G, Hempel M, Peters R and Schomburg W K, 2000, Micro-degasser made of inert polymers for HPLC devices, ASME Winter Annual Meeting (Orlando, FL, 5–10 Nov. 2000).

    Google Scholar 

  31. Lee G-B, Chen S-H, Huang G-R, Lin Y-H, Sung W-C and Lin Y-H, 2001, Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection, Sensors Actuators B, 75, 142–8.

    Article  Google Scholar 

  32. Blankenstein G, 2000, Microfluidic devices for biomedical applications, MST News (Sept. 2000), 14–15, published by: VDI/VDE-Technologiezentrum Informationstechnik.

    Google Scholar 

  33. Grass B, Neyer A, Johnck M, Siepe D, Eisenbeiss F, Weber G and Hergenroder R, 2001, A new PMMA-microchip device for isotachophore-sis with integrated conductivity detector, Sensors Actuators B, 72, 249–58.

    Article  Google Scholar 

  34. Weston DF, Smekal T, Rhine D B and Blackwell J, 2001, Fabrication of microfluidic devices in silicon and plastic using plasma etching, J. Vac. Sci. Technol. B, 19, 2846–51.

    Article  Google Scholar 

  35. Kashanim D, Williams V, Shvets I V, Volkov Y and Kelleher D, 2000, Microfluidic biochips for cell guidance and separation, Proc. First Annu. Int. IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology (Lyon, France, 12–14 Oct. 2000), pp 279–82, (Catalogue no. 00EX451).

    Google Scholar 

  36. Martin J, Bacher W, Hagena O F and Schomburg W K, 1998, Strain gauge pressure and volume-flow transducers made by thermoplastic molding and membrane transfer, Proc. Int. Workshop on Micro-Electro Mechanical Systems, MEMS’98 (Heidelberg, Germany, 25–29 Jan. 1998), pp 361–6.

    Google Scholar 

  37. Dittman D, Ahrens R, Rummler Z, Schlote-Holubek K and Schomburg W K, 2001, Low-cost flow transducer fabricated with the AMANDA process, 11th Int. Conf. On Solid-State Sensors and Actuators, Transducers’01 (Munich, Germany, 10–14 June 2001), paper 4B2.10P.

    Google Scholar 

  38. Chou SY, Krauss PR and Renstrom PJ, 1995, Imprint of sub-25 nm vias and trenches in polymers, Appl. Phys. Lett., 67, 3114–6.

    Article  Google Scholar 

  39. Roos N, Luxbacher T, Glinsner T, Pfeiffer K, Schulz H and Scheer H-C, 2001, Nanoimprint lithography with a commercial 4 inch bond system for hot embossing, Conf. Emerging Lithographic Technologies V, (Santa Clara, CA, 27 Feb.–l Mar. 2001), Proc. SPIE 4343, 427–35.

    Google Scholar 

  40. Lebib A, Chen Y, Cambril E, Youinou P, Studer V, Natali M, Pépin A, Janssen H M and Sijbesma R P, 2002, Room-temperature and low-pressure nanoimprint lithography, Microelectron. Eng., 61–62, 371–7.

    Article  Google Scholar 

  41. Malaquin L, Carcenac F, Vieu C and Mauzac M, 2002, Using polydimenthylsiloxane as a thermocurable resist for a soft imprint lithography process, Microelectron. Eng., 61–62, 379–84.

    Article  Google Scholar 

  42. Roos N, Schulz H, Bendfeldt L, Fink M, Pfeiffer K and Scheer H-C, 2002, First and second generation purely thermoset stamps for hot embossing, Microelectron. Eng., 61–62, 399–405.

    Article  Google Scholar 

  43. Schift H, Heydermann LJ, Padeste C and Gobrecht J, 2002, Chemical nano-patterning using hot embossing lithography, Microelectron. Eng., 61–62, 423–8.

    Article  Google Scholar 

  44. Both A, Bacher W, Heckele M, Müller KD, Ruprecht R and Strohrmann M, 1995, Molding process with high alignment precision for the LIGA technology, Proc. Micro-Electro Mechanical Systems (Amsterdam, The Netherlands, 29 Jan–2 Feb.), pp 186–90, (IEEE Catalogue Number 95 CH35754).

    Google Scholar 

  45. Ehrhardt E, Gehäußer T, Giousouf M, Kück H, Mohr R and Warkentin D, 2002, Innovative concept for the fabrication of micromechanical sensor and actuator device using selectively metallized polymers, Sensors Actuators A, 97–98, 473–7.

    Article  Google Scholar 

  46. Worgull M and Heckele M, 2003, New aspects of simulation in hot-embossing, Proc. DTIP (Cannes Madelieu, 5–7 May 2003).

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Manufacturing High Aspect Ratio Microstructures. In: Micro and Nanomanufacturing. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-26132-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-26132-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25874-4

  • Online ISBN: 978-0-387-26132-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics