Skip to main content

Abstract

Biosensor technology is the driving force in the development of biochips capable of detecting and analyzing biomolecules. A biosensor is a device that detects, records, and transmits information regarding a physiological change or the presence of various chemical or biological materials in the environment. Cell based sensing is the most promising alternative to the existing bio-sensing techniques as cells have the capability of identifying very minute concentrations of environmental agents. The use of living cells as sensing elements provides the opportunity for high sensitivity to a broad range of chemically active substances which affect the electrochemical activity of cells. This chapter provides an overview of the development of cell-based sensors for biological and chemical detection applications, along with significant advances over the last several years. Special emphasis will be given on recently developed planar microelectrode arrays for enabling extracellular recording from electrochemically active cells cultured in vivo. The extracellular signal spectrum can be modulated when the cells are exposed to a variety of chemical agents and this modulated signal constitutes a “signature pattern” which serves as the finger print for a specific chemical agent. Cell based sensors can change the sensing paradigm from “detect-to-treat” to “detect-to-warn”.

Biosensor technology is the driving force in the development of biochips capable of detecting and analyzing biomolecules. A biosensor is a device that detects, records, and transmits information regarding a physiological change or the presence of various chemical or biological materials in the environment. Cell based sensing is the most promising alternative to the existing bio-sensing techniques as cells have the capability of identifying very minute concentrations of environmental agents. The use of living cells as sensing elements provides the opportunity for high sensitivity to a broad range of chemically active substances which affect the electrochemical activity of cells. This chapter provides an overview of the development of cell-based sensors for biological and chemical detection applications, along with significant advances over the last several years. Special emphasis will be given on recently developed planar microelectrode arrays for enabling extracellular recording from electrochemically active cells cultured in vivo. The extracellular signal spectrum can be modulated when the cells are exposed to a variety of chemical agents and this modulated signal constitutes a “signature pattern” which serves as the finger print for a specific chemical agent. Cell based sensors can change the sensing paradigm from “detect-to-treat” to “detect-to-warn”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Akin, K. Najafi, R.H. Smoke, and R.M. Bradley. IEEE Trans. Biomed. Eng., 41:305, 1994.

    Article  Google Scholar 

  2. B.M. Applegate, S.R. Kermeyer, and G.S. Sayler. Appl. Environ. Microbiol., 64:2730, 1998.

    Google Scholar 

  3. S. Belkin, D.R. Smulski, S. Dadon, A.C. Vollmer, T.K. Van Dyk, and R.A. Larossa. Wat. Res., 31:3009, 1997.

    Article  Google Scholar 

  4. R.A. Bissell, A.P. de Silva, H.Q.N. Gunaratne, P.L.M. Lynch, G.E.M. Maguire, and K.R.A.S. Sandanayake. Chem. Soc. Rev., 21:187–195, 1992.

    Article  Google Scholar 

  5. L. Bousse, R.J. McReynolds, G. Kirk, T. Dawes, P. Lam, W.R. Bemiss, and J.W. Parce. Sens. Actu. B, 20:145, 1994.

    Article  Google Scholar 

  6. L.J. Breckenridge, R.J.A. Wilson, P. Connolly, A.S.G. Curtis, J.A.T. Dow, S.E. Blackshaw, and C.D.W. Wilkinson. J. Neurosci. Res., 42:266, 1995.

    Article  Google Scholar 

  7. R.S. Burlage, A.V. Palumbo, A. Heitzer, and G. Sayler. Appl. Microbiol. Biotechnol., 45:731, 1994.

    Google Scholar 

  8. J.C. Chang, G.J. Brewer, and B.C. Wheeler. J. Biomed. Microdev., 2(4):245, 2000.

    Article  Google Scholar 

  9. P. Clark, P. Connolly, A.S.G. Curtis, J.A.T. Dow, and C.D.W. Wilkinson. J. Cell Sci., 99:73, 1991.

    Google Scholar 

  10. B.A. Cornell, V.L. Braach-Maksvytis, L.G. King, P.D. Osman, B. Raguse, L. Wieczorek, and R.J. Pace, Nature, 387:580, 1997.

    Article  Google Scholar 

  11. P. Connolly, G.R. Moores, W. Monaghan, J. Shen, S. Britland, and P. Clark. Sens. Actu., B6:113, 1992.

    Article  Google Scholar 

  12. K.S. Cole and H.J. Curtis. J. Gen. Physiol., 22:649, 1939.

    Article  Google Scholar 

  13. J. Csicsvari, D.A. Henze, B. Jamieson, K.D. Harris, A. Sirota, P. Bartho, K.D. Wise, and G. Buzsaki. J. Neurophysi., 90:1314, 2003.

    Article  Google Scholar 

  14. A.W. Czarnik and J.P. Desvergne. Chemosensors for Ion and Molecule Recognition. Kluwer, Dordrecht, The Netherlands, 1997.

    Google Scholar 

  15. A.P. De Silva and R.A.D.D. Rupasinghe. J. Chem. Soc. Chem. Commun., 166:14, 1985.

    Google Scholar 

  16. A.P. De Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy, J.T. Rademacher, and T.E. Rice. Chem. Rev., 97:1515, 1997.

    Article  Google Scholar 

  17. A.M. Dijkstra, B.H. Brown, A.D. Leathard, N.D. Harris, D.C. Barber, and L. Edbrooke. J. Med. Eng. Technol.,. 17:89, 1993.

    Google Scholar 

  18. C.S. Dulcey, J.H. Georger, A. Krauthamer, Jr., D.A. Stenger, T.L. Fare, and J.M. Calvert. Science, 252:551, 1991.

    Article  Google Scholar 

  19. D.J. Edell, V.V. Toi, V.M. McNeil, and L.D. Clark. IEEE Trans. Biomed. Eng., 39:635, 1992.

    Article  Google Scholar 

  20. C.F. Edman, D.E. Raymond, D.J., Wu, E.G. Tu, R.G. Sosnowski, W.F. Butler, M. Nerenberg, and M.J. Heller. Nucleic Acids Res., 25:4907, 1997.

    Article  Google Scholar 

  21. G.A. Evtugyn, E.P. Rizaeva, E.E. Stoikova, V.Z. Latipova, and H.C. Budnikov. Electroanalysis, 9:1–5, 1997.

    Article  Google Scholar 

  22. H. Fricke and S. Morse. J. Gen. Physiol., 9:153, 1926.

    Article  Google Scholar 

  23. H. Fricke and H.J. Curtis. J. Gen. Physiol., 18:821, 1935.

    Article  Google Scholar 

  24. P. Fromherz, A. Offenhausser, T. Vetter, and J. Weis. Science, 252:290, 1991.

    Article  Google Scholar 

  25. G. Fuhr, H. Glasser, T. Muller, and T. Schnelle. Biochim. Biophys. Acta., 1201:353, 1994.

    Google Scholar 

  26. L. Giaever and C.R. Keese. IEEE Trans. Biomed. Eng., 33:242, 1986.

    Article  Google Scholar 

  27. L. Griscom, P. Degenaar, B. LePioufle, E. Tamiya, and H. Fujita. Sens. Actu. B, 83(12-3):15, 2002.

    Article  Google Scholar 

  28. G.W. Gross, B.K. Rhoades, and R. Jordan. Sen. Actu. B, 6:1, 1992.

    Article  Google Scholar 

  29. G.W. Gross, B.K. Rhoades, H.M.E. Azzazy, and M.C. Wu. Biosens. Bioelectron., 10:553, 1995.

    Article  Google Scholar 

  30. G.W. Gross, W. Wen, and J. Lin. J. Neurosci. Meth., 15:243, 1985.

    Article  Google Scholar 

  31. G.W. Gross, B.K. Rhoades, D.L. Reust, and F.U. Schwalm. J. Neurosci. Meth., 50:131, 1993.

    Article  Google Scholar 

  32. G.W. Gross. Internal dynamics of randomized mammalian neuronal networks in culture. In Enabling Tedmologiesfor Cultured Neural Networks. Academic Press, Vol. 277, 1994.

    Google Scholar 

  33. W. Gopel, J.L. Hesse, and J.N. Zemel. A Comprehensive Survey of Sensors, Trends in Sensor Technology/ Sensor Markets. (ed.), Elseiver, Netherlands, 1995.

    Google Scholar 

  34. L.L. Hause, R.A. Komorowski, and F. Gayon. IEEE Trans. Biomed. Eng., BME-28:403, 1981.

    Article  Google Scholar 

  35. R.P. Haugland. Handbook of Fluorescent Probes and Research Chemicals, 6th Ed. Molecular Probes, Eugene, OR, 1996.

    Google Scholar 

  36. A. Heitzer, K. Malachowsky, J.E. Thonnard, P.R. Bicnkowski, D.C. White, and G.S. Sayler. Appl. Environ. Microbiol., 60:1487, 1994.

    Google Scholar 

  37. R. Heim and R.Y. Tsien. Curr Biol., 1:178–182, 1996.

    Article  Google Scholar 

  38. A.W. Hendricson, M.P. Thomas, M.J. Lippmann, and R.A. Morrisett. J. Pharmacol. Exp. Ther., 307(2):550, 2003.

    Article  Google Scholar 

  39. A.L. Hodgkin and A.F. Huxley. J. Physiol., 117:500, 1952.

    Google Scholar 

  40. Y. Huang, R. Holzel, R. Pethig, and X.B. Wang. Phys. Med. Biol., 37(7):1499–1517, 1992.

    Article  Google Scholar 

  41. M.E. Huston, K.W. Haider, and A.W. Czarnik. J. Am. Chem. Soc., 110:4460, 1988.

    Article  Google Scholar 

  42. M. Jenker, B. Muller, and B. Fromherz. Biol. Cybernetics., 84:239, 2001.

    Article  Google Scholar 

  43. I.S. Kampa and P. Keffer. Clin. Chem., 44:884, 1998.

    Google Scholar 

  44. Y. Kitagawa, M. Ameyama, K. Nakashima, E. Tamiya, and I. Karube. Analyst, 112:1747, 1987.

    Article  Google Scholar 

  45. G.T.A. Kovacs. IEEE Trans. Biomed. Eng., 1992.

    Google Scholar 

  46. M. Kowolenko, C.R. Keese, D.A. Lawrence, and I. Giaever. J. Immunol. Methods, 127:71, 1990.

    Article  Google Scholar 

  47. Y.I. Korpan, M.V. Gonchar, N.F. Starodub, A.A. Shul’ga, A.A. Sibirny, and A.V. El’skaya. Anal. Biochem., 215:216, 1993.

    Article  Google Scholar 

  48. S. Lacorte, N. Ehresmann, and D. Barcelo. Environ. Sci. Technol., 30:917, 1996.

    Article  Google Scholar 

  49. H.B. Li and R. Bashir. Sens. Actu. B, 86:215, 2002.

    Article  Google Scholar 

  50. N. Li, H. Endo, T. Hayashi, T. Fujii, R. Takal, and E. Watanahe. Biosens. Bioelectron., 9:593, 1994.

    Article  Google Scholar 

  51. B. Luc. Sens. Actu. B, 34:270, 1996.

    Article  Google Scholar 

  52. M.P. Maher, J. Pine, J. Wright, and Y.C. Tai. J. Neurosci. Meth., 87:45, 1999.

    Article  Google Scholar 

  53. G.H. Markx, M.S. Talary, and R. Pethig. J. Biotechnol., 32:29, 1994.

    Article  Google Scholar 

  54. G.H. Markx and R. Pethig. Biotech. Bioeng., 45:337, 1995.

    Article  Google Scholar 

  55. M. Malmquist. M Biochem. Soc. T., 27:335, 1999.

    Google Scholar 

  56. H.M. McConnell, J.C. Owicki, J.W. Parce, D.L. Miller, G.T. Baxter, H.G. Wada, and S. Pitchford. Science, 257:1906, 1992.

    Article  Google Scholar 

  57. T.Müller, A. Gerardino, T. Schnelle, S.G. Shirley, Bordoni, Gasperis, G. De, R. Leoni, and G.J. Fuhr. Phys. D: Appl. Phys., 29:340, 1996.

    Article  Google Scholar 

  58. K. Najafi. Sens. Actu. B, 1:453, 1990.

    Article  Google Scholar 

  59. A. Offenhausser, C. Sprossler, M. Matsuzawa, and W. Knoll. Biosens. Bioelectron., 12(8):819, 1997.

    Article  Google Scholar 

  60. A. Ota and S. Hybridoma. Ueda, 17:471, 1998.

    Google Scholar 

  61. J.C. Owicki and J.W. Parce. Biosen. Bioelectron., 7:255, 1992.

    Article  Google Scholar 

  62. J.C. Owicki, J.W. Parce, K.M. Kercso, G.B. Sisal, V.C. Muir, J.C. Vcnter, C.M. Fraser, and H.M. McConnell. Proc. Natl. Acad. Sci., 87:4007, 1990.

    Article  Google Scholar 

  63. B.M. Paddle. Biosens. Bioelectron., 11:1079, 1996.

    Article  Google Scholar 

  64. J.W. Parce, J.C. Owicki, K.M. Kercso, G.B. Sigal, H.G. Wada, V.C. Muir, L.J. Bousse, K.L. Ross, B.I. Sikic, and H.M. McConnell. Science, 246:243, 1989.

    Article  Google Scholar 

  65. D. Pollard-Knight, E. Hawkins, D. Yeung, D.P. Pashby, M. Simpson, A. McDougall, P. Buckle, and S.A. Charles. Ann. Biol. Clin., 48:642, 1990.

    Google Scholar 

  66. H.A. Pohl. Dielectrophoresis, the Behavior of Neutral Matter in Nonuniform Electric Fields. Cambridge University Press, 1978.

    Google Scholar 

  67. H.A. Pohl and I. Hawk. Science, 152:647, 1966.

    Article  Google Scholar 

  68. S. Prasad, M. Yang, X. Zhang, C.S. Ozkan, and M. Ozkan. Biomed. Microdev., 5(2):125, 2003.

    Article  Google Scholar 

  69. W.G. Regehr, J. Pine, and D.B. Rutledge. IEEE Trans. Biomed. Eng., 35:1023, 1998.

    Article  Google Scholar 

  70. B.K. Rhoades and G.W. Gross. Brain Res., 643:310, 1994.

    Article  Google Scholar 

  71. J. Ruhe, R. Yano, J.S. Lee, P. Koberle, W. Knoll, and A. Offenhausser. J. Biomater. Sci.Polym. Ed., 10(8):859, 1999.

    Google Scholar 

  72. T.G. Ruardij, M.H. Goedbloed, and W.L.C. Rutten. Med. Biol. Eng. Comput., 41(2):227, 2003.

    Article  Google Scholar 

  73. H.P. Schwan. C.A. Academic Press, New York, Vol. 5, pp. 147, 1957.

    Google Scholar 

  74. G. Schmuck, A. Freyberger, H.J. Ahr, B. Stahl, and M. Kayser. Neurotoxicology, 24:55, 2003.

    Article  Google Scholar 

  75. M. Scholl, C. Sprossler, M. Denyer, M. Krause, K. Nakajima, A. Maelicke, W. Knoll, and A. Offenhausser. J. Neurosci. Meth., 104:65, 2000.

    Article  Google Scholar 

  76. O. Selifonova, R.S. Burlage, and T. Barkay. Appl. Environ. Micobiol., 59:3083, 1993.

    Google Scholar 

  77. D.E. Semler, E.H. Ohlstein, P. Nambi, C. Slater, and P.H. Stern. J. Pharmacol. Exp. Ther., 272:3:1052, 1995.

    Google Scholar 

  78. J.B. Shear, H.A. Fishman, N.L. AIIbritton, D. Garigan, R.N. Zare, and R.H. Scheller. Science, 267:74, 1995.

    Article  Google Scholar 

  79. J. Singh, P. Khosala, and R.K. Srivastava. Ind. J. Pharmacol., 32:206, 2000.

    Google Scholar 

  80. R.S. Skeen, W.S. Kisaalita, and B.J. Van Wie Biosens. Bioelectronic., 5:491, 1990.

    Article  Google Scholar 

  81. D.A. Stenger, G.W. Goss, E.W. Keefer, K.M. Shaffer, J.D. Andreadis, W. Ma, and J.J. Pancrazino. Trends in Biotechnol., 19:304, 2001.

    Article  Google Scholar 

  82. M. Stephens, M.S. Talary, R. Pethig, A.K. Burnett, and K.I. Mills. Bone Narrow Transpl., 18:777, 1996.

    Google Scholar 

  83. P. Sticher, M.C.M. Jaspers, K. Stemmler, H. Harms, A.J.B. Zehnder, and van der Meer. J.R. Appl. Environ. Microbiol., 63:4053–4060, 1997.

    Google Scholar 

  84. A.A. Suleiman and G.G. Guilbault. Analyst., 119:2279, 1994.

    Article  Google Scholar 

  85. F.J. Swenson. Sens. Actu. B., 11:315, 1992.

    Article  Google Scholar 

  86. D.W. Tank, C.S. Cohan, and S.B. Kater. IEEE Conf. on Synthetic Microstructures, Airlie House, Arlington, Virginia, IEEE, New York, 1986.

    Google Scholar 

  87. H.M. Tan, S.P. Chcong, and T.C. Tan. Biosens. Bioelectron., 9:1, 1994.

    Article  Google Scholar 

  88. T. Takayasu, T. Ohshima, and T. Kondo. Leg. Med., (Tokyo). 3:(3):157, 2001.

    Google Scholar 

  89. P. Thiebaud, L. Lauer, W. Knoll, and A. Offenhausser. Biosens. Bioelectron., 17(1–2):87, 2002.

    Article  Google Scholar 

  90. C. Tiruppathi, A.B. Malik, P.J. Del Vecchio, C.R. Keese, and I. Giaever. Proc. Natl. Acad. Sci., 89:7919, 1992.

    Article  Google Scholar 

  91. R.Y. Tsien. Annu. Rev. Neurosci., 12:227–253, 1989.

    Article  Google Scholar 

  92. D.W. Tank, C.S. Cohan, and S.B. Kater. IEEE Conf. on Synthetic Microstructures. Airlie House, Arlington, Virginia, IEEE, New York, 1986.

    Google Scholar 

  93. R.Y. Tsien. Annu. Rev. Neurosci., 12:227–253, 1989.

    Article  Google Scholar 

  94. S.J. Updike and G.P. Hicks. Nature, 214:986, 1967.

    Article  Google Scholar 

  95. D. Van der Lelie, P. Corbisier, W. Baeyens, S. Wnertz, L. Diels, and M. Mergeay. Res. Microbiol., 145:67, 1994.

    Article  Google Scholar 

  96. H.J. Watts, D. Yeung, and H. Parkes Anal. Chem., 67:4283, 1995.

    Article  Google Scholar 

  97. X. Wang, Y. Huang, P.R.C. Gascoyne, and F.F. Becker. IEEE Tran. Ind. Appl., 33:660, 1997.

    Article  Google Scholar 

  98. B.C. Wheeler, J.M. Corey, G.J. Brewer, and D.W. Branch. J. Biomech. Eng., 121:73, 1999.

    Google Scholar 

  99. J.P. Whelan, L.W. Kusterbeck, G.A., Wemhoff, R. Bredehorst, and F.S. Ligler. Anal. Chem., 65:3561, 1993.

    Article  Google Scholar 

  100. P. Wilding, J. Pfahler, H.H. Ban, J.N. Zemcl, and L.J. Kricka. Clin. Chem., 40:43, 1994.

    Google Scholar 

  101. C. Wyart, C. Ybert, L. Bourdieu, C. Herr, C. Prinz, and D.J. Chattenay. J. Neurosci. Meth., 117(2):23, 2002.

    Google Scholar 

  102. M. Yang, X. Zhang, K. Vafai, and C.S. Ozkan. J. Micromech. Microeng., 13:864, 2003.

    Article  Google Scholar 

  103. M. Yang, X. Zhang, and C.S. Ozkan. Biomed. Microdev., 5:323, 2003.

    Article  Google Scholar 

  104. M. Yang, S. Prasad, X. Zhang, M. Ozkan, and C.S. Ozkan. Sensor Letters, 2:1, 2004.

    Article  Google Scholar 

  105. M. Yang, S. Prasad, X. Zhang, A. Morgan, M. Ozkan, and C.S. Ozkan. Sens. Mater., 15(6):313, 2003.

    Google Scholar 

  106. M. Yang, X. Zhang, Y. Zhang, and C.S. Ozkan. Sens. Actu. B, (in print), 2004.

    Google Scholar 

  107. G. Zeck and P. Fromherz.. Proc. Natl. Acad. Sci. U.S.A., 98(18):10457, 2001.

    Article  Google Scholar 

  108. I. Giaever and C.R. Keese. Proc. Natl. Acad. Sci. U.S.A., 88:7896, 1991.

    Article  Google Scholar 

  109. J. Pancrazio, S.A. Gray, Y.S. Shubin, N. Kulagina, D.S. Cuttino, K.M. Shaffer, K. Kisemann, A. Curran, B. Zim, G.W. Gross, and T.J. O’Shaughnessy. Biosens. Bioelectron., 18(11):1339, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ozkan, C.S., Ozkan, M., Yang, M., Zhang, X., Prasad, S., Morgan, A. (2006). Cell Based Sensing Technologies. In: Ferrari, M., Bashir, R., Wereley, S. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25845-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25845-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25566-8

  • Online ISBN: 978-0-387-25845-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics