Skip to main content

Sequence Matters: The Influence of Basepair Sequence on DNA-protein Interactions

  • Chapter
  • 898 Accesses

Abstract

The sequencing of the human genome, along with the 200-odd other genomes that have been sequenced, does not represent the solution to a puzzle but rather the necessary introduction to a bigger puzzle. That puzzle is how all the 30,000-odd some genes in the human genome are expressed and controlled in a proper sequence for a cell to function. We can hardly address this enormous problem in this brief review, but instead wish to concentrate on one very small but very important aspect of this problem: physical aspects to how proteins are able to achieve base-pair specific recognition. By “physical aspects” we mean that the proteins distort (strain) the DNA helix when they bind, and if this strain is a function of the sequence of the distorted region then the basepair dependent free energy associated with the strain provides a way to discriminate amongst the basepairs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.E. Anderson, M. Ptashne, and S.C. Harrison. Structure of the repressor-operator complex of bacteriophage 434. Nature, 326:846, 1987.

    Article  Google Scholar 

  2. K.S. Bloom and J.N. Anderson. Fractionation and characterization of chromosomal proteins by the hydroxyapatite dissociation method. J. Biol. Chem., 253:4446, 1978.

    Google Scholar 

  3. V.A. Bloomfield, D.M. Crothers, and I. Tinoco. Nucleic Acids: Structure, Properties, and Functions: J. Stiefel (ed.), University Science Books, Sausalito, CA, 2000.

    Google Scholar 

  4. K.J. Breslauer, R. Frank, H. Blocker, and L.A. Marky. Predicting DNA Duplex Stability from the Base Sequence. Proceedings of the National Academy of Sciences of the United States of America. Vol. 83, p. 3746, 1986.

    Article  Google Scholar 

  5. C.R. Calladine and H.R. Drew. Principles of Sequence-Dependent Flexure of DNA. J. Mol. Biol., 192:907, 1986.

    Article  Google Scholar 

  6. Cao Han, Yua Zhaoning, Wang Jian, Chen Erli, Wua Wei, O. Jonas Tegenfeldt, H. Robert Austin, and Y. Stephen Chou. Fabrication of 10 nm enclosed nanofluidic channels. Appl. Phys. Lett., 81:174, 2002.

    Article  Google Scholar 

  7. Cao Han, O. JonasTegenfeldt, H. Robert Austin, and Y. Stephen Chou. Gradient nanostructures for interfacing microfluidics and nanofluidics. Appl. Phys. Lett., 81:3058, 2002.

    Article  Google Scholar 

  8. S.S. Chan, K.J. Breslauer, M.E. Hogan, D.J. Kessler, R.H. Austin, J. Ojemann, J.M. Passner, and N.C. Wiles. Physical studies of DNA premelting equilibria in duplexes with and without homo dA⋅dT Tracts: correlations with DNA binding. Biochemistry, 29:6161, 1990.

    Article  Google Scholar 

  9. S.S. Chan, K.J. Breslauer, R.H. Austin, and M.E. Hogan. Thermodynamics and premelting conformational changes of phased (dA)5 tracts. Biochemistry, 32:11776, 1993.

    Article  Google Scholar 

  10. S.S. Chan, R.H. Austin, I. Mukerji, and T.G. Spiro. Temperature-dependent ultraviolet resonance Raman spectroscopy of the premelting state of dA center dot dT DNA. Biophys. J., 72:1512, 1997.

    Google Scholar 

  11. S.Y. Chou and P.R. Krauss. Imprint lithography with sub-10 nm feature size and high throughput. Microelect. Eng., 35:237, 1997.

    Article  Google Scholar 

  12. CRC Handbook of Chemistry and Physics, 84th Edn., CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  13. N.R. Cozarelli, T. Boles, and J. White. Topology and its Biological Effects. Cold Spring Harbor, 1990.

    Google Scholar 

  14. D.M. Crothers, T.E. Haran, and J.G. Nadeau. Intrinsically Bent DNA. J. Biol. Chem., 265:7093, 1990.

    Google Scholar 

  15. R.E. Dickerson and T.K. Chiu. Helix bending as a factor in protein/DNA recognition. Biopolymers, 44:361, 1997.

    Article  Google Scholar 

  16. R.E. Dickerson. Definitions and nomenclature of nucleic acid structure parameters. Euro. Mol. Biol. J., 8:1, 1989.

    Google Scholar 

  17. R.E. Dickerson. DNA bending: the prevalence of kinkiness and the virtues of normality. Nuc. Acids Res., 265:1906, 1998.

    Article  Google Scholar 

  18. S. Diekmann. Definitions and nomenclature of nucleic acid structure parameters. J. Mol. Biol., 205:787, 1989.

    Article  Google Scholar 

  19. M. Doi and S.F. Edwards. Theory of Polymer Dynamics, Academic Press, NY, 1977.

    Google Scholar 

  20. K.R. Fox. Wrapping of genomic polydApolydT tracts around nucleosome core particles. Nuc. Acids Res., 20:1235, 1992.

    Article  Google Scholar 

  21. B.S. Fujimoto and J.M. Schurr. Dependence of the torsional rigidity of DNA on base composition. Nature, 344:175, 1990.

    Article  Google Scholar 

  22. R.E. Goldstein, T.R. Powers, and C.H. Wiggins. Viscous nonlinear dynamics of twist and writhe. Phys. Rev. Lett., 80:5232, 1998.

    Article  Google Scholar 

  23. P.J. Hagerman. Flexibility of DNA. Ann. Rev. Biophys. Biophys. Chem., 17:265, 1988.

    Article  Google Scholar 

  24. J.E. Herrera and J.B. Chaires. A premelting conformational transition in Poly(dA)-Poly(dT) coupled to daunomycin binding. Biochemistry, 26:1993, 1989.

    Article  Google Scholar 

  25. H. Hogan, J. LeGrange, and B. Austin. Dependence of DNA helix flexibility on base composition. Nature, 304:752, 1983.

    Article  Google Scholar 

  26. M.E. Hogan and R.H. Austin. Importance of DNA stiffness in protein-DNA binding specificity. Nature, 329:263, 1987.

    Article  Google Scholar 

  27. M.E. Hogan, M.W. Roberson and R.H. Austin. DNA flexibility variation may dominate DNase I cleavage. Proc. Natl. Acad. Sci. U.S.A., 86:9273, 1989.

    Article  Google Scholar 

  28. F. Jacob and J. Monod. Genetic regulatory mechanisms in synthesis of proteins. J. Mol. Biol., 3:318, 1961.

    Article  Google Scholar 

  29. L.J. Jensen, C. Friis, and D.W. Ussery. Three views of microbial genomes. Res. Microbiol., 150:773, 1999.

    Article  Google Scholar 

  30. G.R. Kunkel and H.G. Martinson. Nucleosomes will not form on double-stranded RNA or over Poly(dA)poly(dT) tracts in recombinant DNA. Nucleic Acids Res., 6:6869, 1981.

    Article  Google Scholar 

  31. M. Lewis et al. Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science, 271:1247, 1996.

    Article  Google Scholar 

  32. E.M. Lifshitz, L.D.L. Theory of Elasticity, Pergamon Press, New York NY, 1981.

    Google Scholar 

  33. R. Losa, S. Omari, and F. Thoma. Poly(dA)⋅poly(dT) rich sequences are not sufficient to exclude nucleosome formation in a constitutive yeast promoter. Nucleic Acids Res., 18:3495, 1990.

    Article  Google Scholar 

  34. N. Luscombe, S.E. Austin, H.M. Berman, and J.M. Thornton. An overview of the structures of protein-DNA complexes. Gen. Biol. 1, 1 (2000).

    Google Scholar 

  35. L.C. Lutter. Kinetic analysis of deoxyribonuclease I cleavages in the nucleosome core: evidence for a DNA superhelix. J. Mol. Biol., 124: 391, 1978.

    Article  Google Scholar 

  36. N.L. Marky and G.S. Manning. Biopolymers, 31:1557, 1991.

    Article  Google Scholar 

  37. K.W. Marvin, P. Yau, and E.M. Bradbury. Isolation and characterization of acetylated histones H3 and H4 and their assembly into nucleosomes. J. Biol. Chem., 265:19839, 1990.

    Google Scholar 

  38. K. McAteer and M.A. Kennedy. NMR evidence for base dynamics at all TpA steps in DNA. J. Biomol. Struct. Dyn., 17:1001, 2000.

    Google Scholar 

  39. K. Nadassy, I. Tomás-Oliveira, I. Alberts, J. Janin, and S.J. Wodak. Standard atomic volumes in doublestranded DNA and packing in protein-DNA interfaces. Nucleic Acids Res., 29:3362–3376, 2001.

    Article  Google Scholar 

  40. T.M. Okonogi et al. Sequence-dependent dynamics of duplexDNA: the applicability of a dinucleotide model. Biophys. J., 83:3446, 2002.

    Google Scholar 

  41. K.Wilma Olson, A. Andrey Gorin, Lu, Xiang-Jun, M. Lynette Hock, and B. Victor Zhurkin. DNA Sequencedependent deformability deduced from protein-DNA crystal complexes. Proc. Natl. Acad. Sci., U.S.A., 95:11163, 1998.

    Article  Google Scholar 

  42. K. Wilma Olson and B. Victor Zhurkin. Modeling DNA deformations. Curr. Opin. Struct. Biol., 10:286, 2000.

    Article  Google Scholar 

  43. Y.W. Park and K.J. Breslauer, Drug binding to higher ordered DNA structures: netropsin complexation with a nuclei acid triple helix. Proc. Natl. Acad. Sci. U.S.A., 89:6653, 1992.

    Article  Google Scholar 

  44. G.A. Pedersen, L.J. Jensen, K.E. Nelson, S. Brunak, and D.W. Usssery.ADNAstructural atlas for escherichia coli. J. Molec. Biol., 299:706–709, 2000.

    Article  Google Scholar 

  45. G.B. Koudelka, S.C. Harrison, and M. Ptashne. Effect of noncontacted bases on the affinity of 434 operator for 434 repressor and Cro. Nature, 326:886, 1987.

    Article  Google Scholar 

  46. M. Ptashne. Genetic Switch: Phage Lambda and Higher Organisms. Blackwell Science, Malden, MA USA, 1992.

    Google Scholar 

  47. H.L. Puhl, S.R. Gudibande, and M.J. Behe. Poly[d(A⋅T)] and other syntheitc polydeoxynucleotides containing oligoadenosine tracts form nucleosomes easily. J. Mol. Biol., 222:1149, 1991.

    Article  Google Scholar 

  48. D. Rhodes. Nucleosome cores reconstituted from poly(dA-dT) and the octamer of histones. Nucleic Acids Res., 6:1805, 1979.

    Article  Google Scholar 

  49. A. Scipioni, C. Anselmi, G. Zuccheri, B. Samori, and P.D. Santis. Sequence-dependent DNA curvature and flexibility from scanning force microscopy images. Biophys. J., 83:2408, 2002.

    Google Scholar 

  50. A. Yildiz et al. Myosin V Walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science, 300:2061, 2003.

    Article  Google Scholar 

  51. R.T. Simpson and P. Kunzler. Chromatin and core particles formed from the inner histones and synthetic polydeoxyribonucleotides of defined sequence. Nucleic Acids Res., 6:1387, 1979.

    Article  Google Scholar 

  52. K. Steinmetzer, J. Behlke, S. Brantl, and M. Lorenz. CopR binds and bends its target DNA: a footprinting and fluorescence resonance energy transfer study. Nucleic Acids Res., 30:2052, 2002.

    Article  Google Scholar 

  53. D. Strahs and M. Brenowitz. DNA conformational-changes associated with the cooperative binding of Cirepressor of bacteriophage-lambda to O-R. J. Mol. Biol., 244:494, 1994.

    Article  Google Scholar 

  54. D. Szwajkajzer and K. Breslauer. The influence of sequence on the thermodynamics of DNA melting and ligand-binding properties for a family of octameric duplexes. Biophys. J., 64:A281, 1993.

    Article  Google Scholar 

  55. R.H. Austin, J. Tegenfeldt, H. Cao, S. Chu, and E.C. Cox. Scanning the controls: genomics and nanotechnology. IEEE Transac. Nanotechnol., 1:12, 2002.

    Article  Google Scholar 

  56. O. Tegenfeldt Jonas, Prinz Christelle, Cao Han, Chou Steven, W. Reisner Walter, Riehn Robert, Mei Wang Yan, C. Cox Edward. C. Sturm James, Silberzan Pascal, and H. Austin Robert. The dynamics of genomiclength DNA molecules in 100-nm channels. Proc. Natl. Acad. Sc. U.S.A., 101:10979, 2004.

    Article  Google Scholar 

  57. J.D. Watson and F.H.C. Crick. Molecular structure of nucleic acids: a structure for deoxyribose nucleid acid. Nature, 171:737, 1953.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Wang, Y.M., Chan, S.S., Austin, R.H. (2006). Sequence Matters: The Influence of Basepair Sequence on DNA-protein Interactions. In: Ferrari, M., Ozkan, M., Heller, M.J. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25843-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25843-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25564-4

  • Online ISBN: 978-0-387-25843-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics