Skip to main content

Electronic Microarray Technology and Applications in Genomics and Proteomics

  • Chapter
BioMEMS and Biomedical Nanotechnology

Abstract

Electronic microarrays that contain planar arrays of microelectrodes have been developed to provide unique features of speed, accuracy and multiplexing for genomic and proteomic applications through utilizing electric field control to facilitate analytes concentration, DNA hybridization, stringency and multiplexing. An overview of electronic microarray technology is presented followed by its variety applications in genomic research and DNA diagnostics, forensic detection, biologic warfare, and proteomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.A. Alzadeh, M.B. Elsen, R.E. Davis, C. Ma, I.S. Lossos, and A. Rosenwald et al. Nature, 403:503, 2000.

    Article  Google Scholar 

  2. R. Anderson, X. Su, G. Bogdan, and J. Fenton. Nucleic Acids Res., 28:12, 2000.

    Article  Google Scholar 

  3. H.A. Behrensdorf, M. Pignot, N. Windhab, and A. Kappel. Nucleic Acids Res., 30:e64, 2002.

    Article  Google Scholar 

  4. J. Boguslavsky. Lab-on-a-Chip: Easier, Faster, Smaller, Drug Discovery & Development, July/August, p. 32, 2001.

    Google Scholar 

  5. L. Carey and L. Mitnik. Electrophoresis, 23:1386, 2002.

    Article  Google Scholar 

  6. R. Chakraboty, D.N. Stivers, B. Su, Y. Zhong, and B. Budowle. Electrophoresis, 20:1682, 1999.

    Article  Google Scholar 

  7. M. Chee, R. Yang, E. Hubbell, A. Berno, X.C. Huang et al. Science, 274:610, 1996.

    Article  Google Scholar 

  8. J. Cheng, E.L. Sheldon, L. Wu, A. Uribe, L.O. Gerrue, J. Carrino, M.J. Heller, and J.P. O’Connell. Nat. Biotech., 16:541, 1998.

    Article  Google Scholar 

  9. K.L. Cooper and R.V. Goering. J. Mol. Diagn., 5:28, 2003.

    Google Scholar 

  10. B. Dukek and D.J. O’Kane. IVD Technol., 47:Jan/Feb, 2004.

    Google Scholar 

  11. C.F. Edman, D.E. Raymond, D.J. Wu, E. Tu, R.G. Sosnowski, W.F. Butler, M. Nerenberg, and M.J. Heller. Nucleic Acids Res., 25:4907, 1997.

    Article  Google Scholar 

  12. C.F. Edman, P. Mehta, R. Press, C.A. Spargo, G.T. Walker, and M. Nerenberg. J. Investig. Med., 48:93, 2000.

    Google Scholar 

  13. M. Eggers, M. Hogan, R.K. Reich, J.B. Lamture, D. Ehrlich et al. Biotechniques, 17:516, 1994.

    Google Scholar 

  14. M. Erali, B. Schmidt, E. Lyon, and C. Wittwer. Clin. Chem., 49:732, 2003.

    Article  Google Scholar 

  15. J.G. Evans and C. Lee-Tataseo. Clin. Chem., 48:1406, 2002.

    Google Scholar 

  16. K.L. Ewalt, R.W. Haigis, R. Rooney, D. Ackley, and M. Krihak. Anal. Biochem., 289:162, 2001.

    Article  Google Scholar 

  17. L. Feng and M. Nerenberg. Gene. Ther. Mol. Biol., 4:183, 1999.

    Google Scholar 

  18. S.P. Fodor, R.P. Rava, X.C. Huang, A.C. Pease, C.P. Holmes, and C.L. Adams. Nature, 251:767, 1991.

    Google Scholar 

  19. P.N. Gilles, D.J. Wu, C.B. Foster, P.J. Dillon, and S.J. Chanock. Nat. Biotechnol., 17:365, 1999.

    Article  Google Scholar 

  20. J.G. Hacia. Nat. Biotechnol., 21(suppl):42, 1999.

    Google Scholar 

  21. M.J. Heller. IEEE Eng. Med. Biol., 100: March/April, 1996.

    Google Scholar 

  22. M.J. Heller. Annu. Rev. Biomed. Eng., 4:129, 2002.

    Article  Google Scholar 

  23. M.J. Heller, E. Tu, R. Martinsons, R.R. Anderson, C. Gurtner, A.H. Forster, and R. Sosnowski. In M.J. Heller and A. Guttman (ed.), Integrated Microfabricated Biodevices. Marcel Dekker, New York, p. 223, 2002.

    Google Scholar 

  24. M. Heller, A.H. Forster, and E. Tu. Electrophoresis, 21:157, 2000.

    Article  Google Scholar 

  25. M.J. Heller, E. Tu. U.S. Patent # 5,605,662 Nanogen, Inc., San Diego, CA, 1997.

    Google Scholar 

  26. Y. Huang, K.L.Ewalt, M. Tirado, R. Haigis, A. Forster, D. Ackley, M.J. Heller, J.P. O’Connell, and M. Krihak. Anal. Chem., 73:1549, 2001.

    Article  Google Scholar 

  27. Y. Huang, S. Joo, M. Duhon, M. Heller, B. Wallace, and X. Xu. Anal. Chem., 74:3362, 2002.

    Article  Google Scholar 

  28. Y. Huang, J.M. Yang, P.J. Hopkins, S. Kassegne, M. Tirado, A.H. Forster, and H. Reese. Biomed. Microdev., 3:217, 2003.

    Article  Google Scholar 

  29. Y. Huang, J. Shirajian, A. Schroder, Z. Yao, T. Summers, D. Hodko, and R. Sosnowski. Electrophoresis, 25:3106, 2004.

    Article  Google Scholar 

  30. K. Huss, R.M. Campbell, S. Miick, S. Jalali, D. Thomas, and M. Jimenez. 9th Annual SBC Conference, Poster 1025, Portland, OR, 2003.

    Google Scholar 

  31. S.K. Kassegne, H. Reese, D. Hodko, J.M. Yang, K. Sarkar, D. Smolko, P. Swanson, D.E. Raymond, M.J. Heller, and M.J. Madou. Sens. Actu. B, 94:81, 2003.

    Article  Google Scholar 

  32. K. Liszewski. Broader Uses for Microfluidics Technologies, Genet. Eng. News, vol. 23, no 9, p. 40, 2003.

    Google Scholar 

  33. M. McCormick. Genet. Eng. News, vol. 23, no. 15, p. 34, 2003.

    MathSciNet  Google Scholar 

  34. C.E. Pearson, Y.H. Wang, J.D. Griffith, and R.R. Sinden. Nucleic Acids Res., vol. 26, 816, 1988.

    Article  Google Scholar 

  35. E.S. Pollak, L. Feng, H. Ahadian, and P. Fortina. Ital. Heart J., 2:568, 2001.

    Google Scholar 

  36. S. Raddatz, J. Mueller-Ibeler, J. Kluge, L. Wass, G. Burdinski, J.R. Haven, T.J. Onofrey, D. Wang, and M. Schweitzer. Nucleic Acids Res., 30:4793, 2002.

    Article  Google Scholar 

  37. R. Radtkey, L. Feng, M. Muralhidar, M. Duhon, D. Canter, D. DiPierro, S. Fallon, E. Tu, K. McElfresh, M. Nerenberg, and R. Sosnowski. Nucleic Acids Res., 28:e17, 2000.

    Article  Google Scholar 

  38. E. Ricart, W.R. Taylor, E.V. Loftus, D. O’Kane, R.M., Weinshilboum, W.J. Tremaine, W.S. Harmsen, A.R. Zinsmeister, and W.J. Sandborn. Am. J. Gastroenterol., 97:1763, 2002.

    Article  Google Scholar 

  39. R. Santacroce, A. ratti, F. Caroli, B. Foglieni, A. Ferraris et al. Clin. Chem., 48:2124, 2002.

    Google Scholar 

  40. M. Schena, D. Shalon, R.W. Davis, and P.O. Brown. Science, 270:467, 1995.

    Article  Google Scholar 

  41. I. Schrijver, M.J. Lay, and J.L. Zehnder. Am. J. Clin. Pathol. 119:490, 2003.

    Article  Google Scholar 

  42. E. Sheldon, et al. In electronic sample handling. In S.A. Minden and L.M. Savage (ed.), Diagnostic Gene Detection & Quantification Technologies for Infectious Agents and Human Genetic Diseases, IBC Library Series, pp. 225–238, 1997.

    Google Scholar 

  43. Y.R. Sohni, J.R. Cerhan, and D. O’Kane. Hum. Immunol. 64:2003.

    Google Scholar 

  44. R. Sosnowski, E. Tu,W.F. Butler, J. O’Connell, and M. J. Heller. Proc. Natl. Acad. Sci. USA, vol. 94, p. 1119, 1997.

    Article  Google Scholar 

  45. R. Sosnowski, M.J. Heller, E. Tu, A.H. Forster, and R. Radtkey. Psychiatr. Genet., 12:181, 2002.

    Article  Google Scholar 

  46. P. Swanson, R. Gelbart, A.E. Atlas, L. Yang, T. Grogan, W.F. Butler, D.E. Ackley, and E. Sheldon. Sens. Actur. B., 64:22, 2000.

    Article  Google Scholar 

  47. W.A. Thistlethwaite, L.M. Moses, K.C. Hoffbuhr, J.M. Devaney, and E.P. Hoffman. J. Mol. Diagn., 5:121, 2003.

    Google Scholar 

  48. V.W. Weedn and J.W. Hicks. Natl. Inst. Justics J., 234:16, 1997.

    Google Scholar 

  49. E.M. Weidenhammer, B.F. Kahl, L. Wang, L. Wang, M. Duhon, J.A. Jackson, M. Slater, and X. Xu. Clin. Chem., 48:1873, 2002.

    Google Scholar 

  50. L. Westin, X. Xu, C. Miller, L. Wang, C.F. Edman, and M. Nerenberg. Nat. Biotechnol., 18:199, 2000.

    Article  Google Scholar 

  51. L.Westin, C. Miller, D.Vollmer, D. Canter, R. Radtkey, M. Nerenberg, and J.P. O’Connell. J. Clin. Microbiol., 39:1097, 2001.

    Article  Google Scholar 

  52. J.M. Yang, J. Bell, Y. Huang, M. Tirado, T. Thomas, A.H. Forster, R.W. Haigis, P.D. Swanson, R.B. Wallace, B. Martinsons, and M. Krihak. Biosen. Bioelect., 17:605, 2002.

    Article  Google Scholar 

  53. N. Yoshida, Y. Nishimaki, M. Sugiyama, T. Abe, T. Tatsumi, A. Tanoue, A. Hirasawa, and G. Tsujimoto. J. Hum. Genet., 47:500, 2002.

    Article  Google Scholar 

  54. K. Zimmermann, T. Eiter, and F. Scheiflinger. J. Microbio. Methods, 55:471, 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Huang, Y., Hodko, D., Smolko, D., Lidgard, G. (2006). Electronic Microarray Technology and Applications in Genomics and Proteomics. In: Ferrari, M., Ozkan, M., Heller, M.J. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25843-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25843-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25564-4

  • Online ISBN: 978-0-387-25843-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics