Skip to main content

Magnetic Nanoparticles for MR Imaging

  • Chapter
BioMEMS and Biomedical Nanotechnology

Abstract

The combination of a nonmaterial, magnetic nanoparticles, with magnetic resonance imaging, is yielding major advances in diverse areas of biology and medicine. This review will present a short history of iron oxide based nanoparticles, and review important new developments in the fields of magnetic nanoparticles and MRI. Magnetic nanoparticles are currently used in approved MRI contrast agents for imaging hepatic metastases and show considerable potential in clinical testing for imaging nodal metastases. New applications of magnetic nanoparticles include (i) ex-vivo labeling of cells with nanoparticles, followed by MR imaging in vivo, (ii) magnetic nanoparticles as biosensors termed magnetic relaxation switches, to measure a wide range of analytes in vitro, (iii) magneto/optical nanoparticles providing a fluorescent signal in addition to their magnetic character and (iv) biomolecule targeted magnetic nanoparticles for the imaging of specific molecular targets by MRI. This review will cover each of these diverse developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.L. Burns, E.A. Mascioli, and B.R. Bistrian. Parenteral iron dextran therapy: a review. Nutrition, 11(2):163–168, 1995.

    Google Scholar 

  2. S.T. Callender. Treatment of iron deficiency. Clin. Haematol., 11(2):327–338, 1982.

    Google Scholar 

  3. M. Ohgushi, K. Nagayama, and A. Wada. Dextran-magnetite: a new relaxation reagent and its application to T2 measurements in gel systems. J. Mag. Res., (1969–1992), 29(3):599–601, 1978.

    Google Scholar 

  4. A. Moore, R. Weissleder, and A. Bogdanov. Jr., Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J. Magn. Reson. Imaging, 7(6):1140–1145, 1997.

    Article  Google Scholar 

  5. S. Saini et al. Ferrite particles: a superparamagnetic MR contrast agent for the reticuloendothelial system. Radiology, 162(1 Pt 1):211–216, 1987.

    Google Scholar 

  6. A. Hemmingsson et al. Relaxation enhancement of the dog liver and spleen by biodegradable superparamagnetic particles in proton magnetic resonance imaging. Acta. Radiol., 28(6):703–705, 1987.

    Article  Google Scholar 

  7. J.T. Ferrucci and D.D. Stark. Iron oxide-enhanced MR imaging of the liver and spleen: review of the first 5 years. AJR Am. J. Roentgenol., 155(5):943–950, 1990.

    Google Scholar 

  8. A. Chachuat and B. Bonnemain. European clinical experience with Endorem. A new contrast agent for liver MRI in 1000 patients. Radiologe., 35(11 Suppl 2):S274–S276, 1995.

    Google Scholar 

  9. P. Reimer and B. Tombach. Hepatic MRI with SPIO: detection and characterization of focal liver lesions. Eur. Radiol., 8(7):1198–1204, 1998.

    Article  Google Scholar 

  10. R. Weissleder et al. Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology, 175(2):494–498, 1990.

    Google Scholar 

  11. R. Weissleder et al. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology, 175(2):489–493, 1990.

    Google Scholar 

  12. C.W. Jung and P. Jacobs. Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn. Reso. Imaging, 13(5):661–674, 1995.

    Article  Google Scholar 

  13. M.G. Harisinghani et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med., 348(25):2491–2499, 2003.

    Article  Google Scholar 

  14. R. Sigal et al. Lymph node metastases from head and neck squamous cell carcinoma: MR imaging with ultrasmall superparamagnetic iron oxide particles (Sinerem MR)—results of a phase-III multicenter clinical trial. Eur. Radiol., 12(5):1104–1113, 2002.

    Article  MathSciNet  Google Scholar 

  15. J.W. Bulte and M. De Cuyper. Magnetoliposomes as contrast agents. Methods Enzymol, 373:175–198, 2003.

    Article  Google Scholar 

  16. L. Illum et al. Development of systems for targeting the regional lymph nodes for diagnostic imaging: in vivo behaviour of colloidal PEG-coated magnetite nanospheres in the rat following interstitial administration. Pharm. Res., 18(5):640–645, 2001.

    Article  Google Scholar 

  17. NC 100150. (Clariscan, PEG-Ferron). Drugs R D, 3(5):303–304, 2002.

    Google Scholar 

  18. L. Josephson et al. Near-Infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjug. Chem., 13(3):554–560, 2002.

    Article  Google Scholar 

  19. M.F. Kircher, L. Josephson, and R. Weissleder. Ratio imaging of enzyme activity using dual wavelength optical reporters. Mol. Imaging, 1(2):89–95, 2002.

    Article  Google Scholar 

  20. M.F. Kircher, R. Weissleder, and L. Josephson. A dual fluorochrome probe for imaging proteases. Bioconjug. Chem., 15(2):242–248, 2004.

    Article  Google Scholar 

  21. P. Wunderbaldinger, L. Josephson, and R. Weissleder. Tat Peptide Directs Enhanced Clearance and Hepatic Permeability of Magnetic Nanoparticles. Bioconjug. Chem., 13(2):264–268, 2002.

    Article  Google Scholar 

  22. M.F. Kircher et al.Amultimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer. Res., 63(23):8122–8125, 2003.

    Google Scholar 

  23. L. Josephson, J.M. Perez, and R. Weissleder. Magnetic nanosensors for the detection of oligonucleotide sequences. Angewandte Chemie, Internat. Ed., 40(17):3204–3206, 2001.

    Article  Google Scholar 

  24. J.M. Perez et al. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol., 20(8):816–820, 2002.

    Google Scholar 

  25. J.M. Perez et al. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J. Am. Chem. Soc., 125(34):10192–10193, 2003.

    Article  Google Scholar 

  26. J.M. Perez, L. Josephson, and R. Weissleder. Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. Chembiochem, 5(3):261–264, 2004.

    Article  Google Scholar 

  27. L. Josephson et al. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug. Chem., 10(2):186–191, 1999.

    Article  Google Scholar 

  28. M. Lewin et al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol., 18(4):410–414, 2000.

    Article  Google Scholar 

  29. M.F. Kircher et al. In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer. Res., 63(20):6838–6886, 2003.

    Google Scholar 

  30. P.F. Renshaw et al. Immunospecific NMR contrast agents. Magn Reson Imaging, 4(4):351–357, 1986.

    Article  Google Scholar 

  31. R. Weissleder et al. Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology, 182(2):381–385, 1992.

    Google Scholar 

  32. R. Weissleder et al. Polyclonal human immunoglobulin G labeled with polymeric iron oxide: antibody MR imaging. Radiology, 181(1):245–249, 1991.

    Google Scholar 

  33. R.S. Molday and D. MacKenzie. Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. J. Immunol. Methods, 52(3):353–367, 1982.

    Article  Google Scholar 

  34. L. Josephson et al. The effects of iron oxides on proton relaxivity. Magn. Reso. Imaging, 6(6):647–653, 1988.

    Article  Google Scholar 

  35. D. Hogemann et al. High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes. Bioconjug. Chem., 13(1):116–121, 2002.

    Article  Google Scholar 

  36. T. Shen et al. Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. Magn. Reso. Med., 29(5):599–604, 1993.

    Article  Google Scholar 

  37. M. Kresse et al. Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways. Magn. Reso. Med., 40(2):236–242, 1998.

    Article  Google Scholar 

  38. R. Weissleder et al. In vivo magnetic resonance imaging of transgene expression. Nat. Med., 6(3):351–355, 2000.

    Article  Google Scholar 

  39. J.W. Bulte et al. Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc. Natl. Acad. Sci. U.S.A., 96(26):15256–15261, 1999.

    Article  Google Scholar 

  40. X. Gao et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol., 22(8):969–976, 2004.

    Article  Google Scholar 

  41. W.C. Chan et al. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol., 13(1):40–46, 2002.

    Article  Google Scholar 

  42. M. Zhao et al. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat. Med., 7(11):1241–1244, 2001.

    Article  Google Scholar 

  43. L. Josephson et al. A functionalized superparamagnetic iron oxide colloid as a receptor directed MR contrast agent. Magn. Reso. Imaging, 8(5):637–646, 1990.

    Article  Google Scholar 

  44. L.O. Johansson et al. A targeted contrast agent for magnetic resonance imaging of thrombus: implications of spatial resolution. J. Magn. Reso. Imaging, 13(4):615–618, 2001.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Josephson, L. (2006). Magnetic Nanoparticles for MR Imaging. In: Ferrari, M., Lee, A.P., Lee, L.J. (eds) BioMEMS and Biomedical Nanotechnology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25842-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-25842-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25563-7

  • Online ISBN: 978-0-387-25842-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics