Advertisement

Microspheres for Drug Delivery

  • Kyekyoon Kevin Kim
  • Daniel W. Pack

Abstract

With advances in biotechnology, genomics, and combinatorial chemistry, a wide variety of new, more potent and specific therapeutics are being created. Because of common problems such as low solubility, high potency, and/or poor stability of many of these new drugs, the means of drug delivery can impact efficacy and potential for commercialization as much as the nature of the drug itself. Thus, there is a corresponding need for safer and more effective methods and devices for drug delivery. Indeed, drug delivery systems—designed to provide a therapeutic agent in the needed amount, at the right time, to the proper location in the body, in a manner that optimizes efficacy, increases compliance and minimizes side effects—were responsible for $47 billion in sales in 2002, and the drug delivery market is expected to grow to $67 billion by 2006.

Keywords

Drug Release Shell Thickness Drug Release Rate PLGA Microsphere Polymer Microsphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.P. Al-Azzam, A. Emil, and Kai Griebenow. Co-lyophilization of bovine serum albumin (BSA) with poly(ethylene glycol) improves efficiency of BSA encapsulation and stability in polyester microspheres by a solid-in-oil-in-oil technique. Biotechnol. Lett., 24(16):1367–1374, 2002.CrossRefGoogle Scholar
  2. [2]
    M.J. Alonso, R.K. Gupta, C. Min, G.R. Siber, and R. Langer. Biodegradable microspheres as controlledrelease tetanus toxoid delivery systems. Vaccine, 12(4):299–306, 1994.CrossRefGoogle Scholar
  3. [3]
    B. Amsden. The Production of Uniformly Sized Polymer Microspheres. Pharm. Res., 16(7):1140–1143, 1999a.CrossRefGoogle Scholar
  4. [4]
    B. Amsden. The production of uniformly sized polymer microspheres. Pharm. Res., 16:1140–1143, 1999b.CrossRefGoogle Scholar
  5. [5]
    B.G. Amsden and M. Goosen. An examination of the factors affecting the size, distribution, and release characteristics of polymer microbeads made using electrostatics. J. Control. Rel., 43:183–196, 1997.CrossRefGoogle Scholar
  6. [6]
    S. Ando, D. Putnam, D.W. Pack, and R. Langer. PLGAMicrospheres Containing PlasmidDNA: Preservation of Supercoiled DNA via Cryopreparation and Carbohydrate Stabilization. J. Pharmaceut. Sci., 88(1):126–130, 1998.CrossRefGoogle Scholar
  7. [7]
    B.B. Baras, M.A., and J. Gillard. Parameters influencing the antigen release from spray-dried poly(DLlactide) microparticles. Internat. J. Pharmaceut., 200(1):133–145, 2002.CrossRefGoogle Scholar
  8. [8]
    D.H. Barouch, S. Santra, J.E. Schmitz, M.J. Kuroda, T.-M. Fu, W. Wagner, M. Bilska, A. Craiu, X.X. Zheng, G.R. Krivulka and others. Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science, 290:486–492, 2000.CrossRefGoogle Scholar
  9. [9]
    E.L.W. Barrow, G.A. Winchester, J.K. Staas, D.C. Quenelle, and W.W. Barrow. Use of microsphere technology for targeted delivery of rifampin to Mycobacterium tuberculosis-infected macrophages. Antimicrob. Agents Chemothera., 42:2682–2689, 1998.Google Scholar
  10. [10]
    R.P. Batycky, J. Hanes, R. Langer, and D.A. Edwards. A theoretical model of erosion and macromolecular drug release from biodegrading microspheres. J. Pharm. Sci., 86:1464–1477, 1997.CrossRefGoogle Scholar
  11. [11]
    M.A. Beboit, B. Baras, and J. Gillard. Preparation and characterization of protein-loaded poly(ε-caprolactone) microparticles for oral vaccine delivery. Int. J. Pharm., 184:73–84, 1999.CrossRefGoogle Scholar
  12. [12]
    C. Berkland. Methods of controlling size distribution of polymeric drug delivery particles. [M.S.]. University of Illinois, Urbana, IL, 2001.Google Scholar
  13. [13]
    C. Berkland, A. Cox, K.K. Kim, and D.W. Pack. Three-month, zero-order piroxicam release from monodispersed double-walled microspheres of controlled shell thickness. J. Biomed. Mat. Res., 2004a (in press).Google Scholar
  14. [14]
    C. Berkland, K. Kim, and D.W. Pack. Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. J. Control. Rel., 73:59–74, 2001.CrossRefGoogle Scholar
  15. [15]
    C. Berkland, K. Kim, and D.W. Pack. PLG microsphere size controls drug release rate through several competing factors. Pharm. Res., 20:1055–1062, 2003.CrossRefGoogle Scholar
  16. [16]
    C. Berkland, K. Kim, and D.W. Pack. Precision Polymer Microparticles for Controlled Release Drug Delivery. ACS Symposium Series, 879:197–213, 2004b.CrossRefGoogle Scholar
  17. [17]
    C. Berkland, M. King, A. Cox, K. Kim, and D.W. Pack. Precise control of PLG microsphere size provides enhanced control of drug release rate. J. Control. Rel., 82:137–147, 2002.CrossRefGoogle Scholar
  18. [18]
    C. Berkland, M.J. Kipper, B. Narasimhan, K. Kim, and D.W. Pack. Microsphere size, precipitation kinetics, and drug distribution control drug release from biodegradable polyanhydride microspheres. J. Control. Rel., 94:129–141, 2004c.CrossRefGoogle Scholar
  19. [19]
    C. Berkland, D.W. Pack, and K. Kim. Controlling surface nano-structure using flow-limited field-injection electrostatic spraying (FFESS) of poly(D,L-lactide-co-glycolide). Biomaterials, 25:5649–5658, 2004d.CrossRefGoogle Scholar
  20. [20]
    C. Berkland, E. Pollauf, D.W. Pack, and K. Kim. Uniform double-walled polymer microcapsules of controllable shell thickness. J. Control. Rel., 96:101–111, 2004e.CrossRefGoogle Scholar
  21. [21]
    J.M. Bezemer, R. Radersma, D.W. Grijpma, P.J. Dijkstra, C.A. van Blitterswijk, and J. Feijen. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers 2. Modulation of release rate. J. Control. Rel., 67:249–260, 2000a.CrossRefGoogle Scholar
  22. [22]
    J.M. Bezemer, R. Radersma, D.W. Grijpma, P.J. Dijkstra, A.A. van Blitterswijk, and J. Feijen. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers 2. Modulation of release rate. J. Control. Rel., 67:249–260, 2000b.CrossRefGoogle Scholar
  23. [23]
    D.C. Bibby, N.M. Davies, and I.G. Tucker. Poly(acrylic acid) microspheres containing beta-cyclodextrin: loading and in vitro release of two dyes. Int. J. Pharm., 187:243–250, 1999.CrossRefGoogle Scholar
  24. [24]
    B. Bittner, C. Witt, K. Mader, and T. Kissel. Degradation and protein release properties of microspheres prepared from biodegradable poly(lactide-co-glycolide) and ABA triblock copolymers: influence of buffer media on polymer erosion and bovine serum albumin release. J. Control. Rel., 60(2–3):297–309, 1999.CrossRefGoogle Scholar
  25. [25]
    D. Blanco and M.J. Alonso. Protein encapsulation and release from poly(lactide-co-glycolide) microspheres. Effect of the protein and polymer properties and of the co-encapsulation of surfactants. Euro. J. Pharm. Biopharm., 45(3):285–294, 1998.CrossRefGoogle Scholar
  26. [26]
    J. Bonadio, S.A. Goldstein, and R.J. Levy. Gene therapy for tissue repair and regeneration. Adv. Drug Del. Rev., 33:53–69, 1998.CrossRefGoogle Scholar
  27. [27]
    S. Bozdag, S. Calis, H.S. Kas, M.T. Ercan, I. Peksoy, and A.A. Kincal. In vitro evaluation and intra-articular administration of biodegradable microspheres containing naproxen sodium. J. Microencap., 18(4):443–456, 2001.CrossRefGoogle Scholar
  28. [28]
    V. Budker, G. Zhang, S. Knechtle, and J.A. Wolff. Naked DNA delivered intraportally expresses efficiently in hepatocytes. Gene Ther., 3:593–598, 1996.Google Scholar
  29. [29]
    F.V. Burkersroda, L. Schedl, and A. Gopferich. Why Degradable Polymers Undergo Surface Erosion or Bulk Erosion. Biomaterials, 23:4221–4231, 2002.CrossRefGoogle Scholar
  30. [30]
    S.M. Butler, M.A. Tracy, and R.D. Tilton. Adsorption of serum albumin to thin films of poly(lactide-coglycolide). J. Control. Rel., 58:335–347, 1999.CrossRefGoogle Scholar
  31. [31]
    P. Calvo, C. Remuñan-Lópex, J.L. Vila-Jato, and M.J. Alonso. Chitosan and chitosan/ethylene oxidepropylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm. Res., 14:1431–1436, 1997.CrossRefGoogle Scholar
  32. [32]
    F. Caruso. Nanoengineering of particle surfaces. Adv. Mater., 13(1):11–22, 2001.CrossRefGoogle Scholar
  33. [33]
    I.J. Castellanos, K.G. Carrasquillo, J.D. Lopez, M. Alvarez, and K. Griebenow. Encapsulation of bovine serum albumin in poly(lactide-co-glycolide) microspheres by the solid-in-oil-in-water technique. J. Pharm. Pharmacol., 53:167–178, 2001.CrossRefGoogle Scholar
  34. [34]
    I.J.C. Castellanos, and Kai. Gloydian; Crespo, Ruben; Griebenow. Encapsulation-induced aggregation and loss in activity of g-chymotrypsin and their prevention. J. Control. Rel., 81(3):307–319, 2002.CrossRefGoogle Scholar
  35. [35]
    I.J.C. Castellanos and Kai. Ruben; Griebenow. Poly(ethylene glycol) as stabilizer and emulsifying agent: a novel stabilization approach preventing aggregation and inactivation of proteins upon encapsulation in bioerodible polyester microspheres. J. Control. Rel., 88(1):135–145, 2003.CrossRefGoogle Scholar
  36. [36]
    A. Chang and R.K. Gupta. Stabilization of tetanus toxoid in poly(D,L-lactic-co-glycolic acid) microspheres for the controlled release of antigen. J. Pharm. Sci., 85:129–132, 1996.CrossRefGoogle Scholar
  37. [37]
    Y. Cheng, L. Illum, and S.S. Davis. A poly(dl-lactide-co-glycolide) microsphere depot system for delivery of haloperidol. J. Control. Rel., 55:203–212, 1998.CrossRefGoogle Scholar
  38. [38]
    Y. Choi, S.Y. Kim, S.H. Kim, K-S. Lee, C. Kim, and Y. Byun. Long-term delivery of all-trans-retinoic acid using biodegradable PLLA/PEG-PLLA blended microspheres. Internat. J. Pharm., 215(1–2):67–81, 2001.CrossRefGoogle Scholar
  39. [39]
    Y.B. Choy, C. Berkland, H. Choi, D.W. Pack, and K. Kim. Fabrication and characterization of Uniform ethyl Cellulose Microspheres for use as Advanced Drug Delivery Vehicles, 30th Annual Meeting & Exposition of the Controlled Release Society, 2003.Google Scholar
  40. [40]
    Y.B. Choy, H. Choi, and K. Kim. A Novel Method of Fabricating Uniform Chitosan Microspheres of Precisely Controlled Size and Size Distribution, 31th Annual Meeting & Exposition of the Controlled Release Society, 2004.Google Scholar
  41. [41]
    Y.B. Choy, H. Choi, and K. Kim. Novel Fabrication Method for Uniform Gelatin Microspheres of Precisely Controlled Size and Size Distribution, 31th Annual Meeting&Exposition of the Controlled Release Society, 2004.Google Scholar
  42. [42]
    Y.B. Choy, H. Choi, and K. Kim, A novel method of fabricating uniform hydrogel microspheres of precise size and size distribution, manuscript in preparation (2004).Google Scholar
  43. [43]
    L.Y. Chu, R. Xie, J.H. Zhu, W.M. Chen, T. Yamaguchi, and S.I. Nakao. Study of SPG membrane emulsification processes for the preparation of monodisperse core-shell microcapsules. J. Colloid Interface Sci., 265: 187–196, 2003.CrossRefGoogle Scholar
  44. [44]
    J.L. Cleland. Solvent evaporation processes for the production of controlled release biodegradable microsphere formulations for therapeutics and vaccines. Biotechnol. Progress, 14(1):102–107, 1998.CrossRefGoogle Scholar
  45. [45]
    J.L. Cleland. Single-administration vaccines: controlled-release technology to mimic repeated immunizations. Trends Biotechnol., 17(1):25–29, 1999.CrossRefGoogle Scholar
  46. [46]
    J.L. Cleland, E.T. Duenas, A. Park, A. Daugherty, J. Kahn, J. Kowalski, and A. Cuthbertson. Development of poly-(D,L-lactide-co-glycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis. J. Control. Rel., 72(1–3):13–24, 2001.CrossRefGoogle Scholar
  47. [47]
    J.L. Cleland, A. Lim, A. Daugherty, L. Barron, N. Desjardin, E.T. Duenas, D.J. Eastman, J.C. Vennari, T. Wrin, P. Berman and others. Development of a single-shot subunit vaccine for HIV-1 with programmable in vivo autoboost and long-lasting neutralizing response. J. Pharm. Sci., 87(12):1489–1495, 1998.CrossRefGoogle Scholar
  48. [48]
    H. Cohen, R.J. Levy, J. Gao, I. Fishbein, V. Kousaev, S. Sosnowski, S. Slomkowski, and G. Golomb. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther., 7:1896–1905, 2000.CrossRefGoogle Scholar
  49. [49]
    S. Cohen, T. Yoshioka, M. Lucarelli, L.H. Hwang, and R. Langer. Controlled delivery systems for proteins based on poly(Lactic/Glycolic Acid) microspheres. Pharma. Res., 8(6):713–720, 1991.CrossRefGoogle Scholar
  50. [50]
    G. Crotts and Park TG. Preparation of porous and nonporous biodegradable polymeric hollowmicrospheres. J. Controlled. Rel., 35:91–105, 1995.CrossRefGoogle Scholar
  51. [51]
    M. Diwan and T.G. Park. Pegylation enhances protein stability during encapsulation in PLGA microspheres. J. Controlled Rel., 73(2–3):233–244, 2001.CrossRefGoogle Scholar
  52. [52]
    J.J. Donnelly, J.B. Ulmer, J.W. Shiver, and M.A. Liu. DNA vaccines. Annu. Rev. Immunol., 15:617–648, 1997.CrossRefGoogle Scholar
  53. [53]
    V.J. Dwarki, P. Belloni, T. Nijjar, J. Smith, L. Couto, M. Rabier, S. Clift, A. Berns, and L.K. Cohen. Gene therapy for hemophilia A: production of therapeutic levels of human factor VIII in vivo in mice. PNAS, 92:1023–1027, 1995.CrossRefGoogle Scholar
  54. [54]
    J. Fang, Y.-Y. Zhu, E. Smiley, J. Bonadio, J.P. Rouleau, S.A. Goldstein, L.K. McCauley, B.L. Davidson, and B.J. Roessler. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc. Natl. Acad. Sci., 93:5753–5758, 1996.CrossRefGoogle Scholar
  55. [55]
    P.L. Felgner and G.M. Ringold. Cationic liposome-mediated transfection. Nature, 337:387, 1989.CrossRefGoogle Scholar
  56. [56]
    C.A. Foster, K. Kim, R.J. Turnbull, and C.D. Hendricks. Apparatus for producing uniform solid spheres of hydrogen. Rev. Sci. Instrum., 48:625–631, 1977.CrossRefGoogle Scholar
  57. [57]
    M. Frangione-Beebe, R.T. Rose, P.T. Kaumaya, and S.P. Schwendeman. Microencapsulation of a synthetic peptide epitope for HTLV-1 in biodegradable poly(D,L-lactide-co-glycolide) microspheres using a novel encapsulation technique. J. Microencapsul., 18:663–677, 2001.CrossRefGoogle Scholar
  58. [58]
    S. Freitas, H.P. Merkle, and B. Gander. Ultrasonic atomisation into reduced pressure atmosphere-envisaging aseptic spray-drying for microencapsulation. J. Control. Rel., 95:185–195, 2004.CrossRefGoogle Scholar
  59. [59]
    A.M. Friedlander, S.L. Welkos, and B.E. Ivins. Anthrax Vaccines. Curr. Topics Microbiol. Immunol., 271(Anthrax):33–60, 2002.Google Scholar
  60. [60]
    K. Fu, K. Griebenow, L. Hsieh, A.M. Klibanov, and R. Langer. FTIR characterization of the secondary structure of proteins encapsulated within PLGA microspheres. J. Control. Rel., 58(3):357–366, 1999.CrossRefGoogle Scholar
  61. [61]
    K. Fu, R. Harrell, K. Zinski, C. Um, A. Jaklenec, J. Frazier, N. Lotan, P. Burke, A.M. Klibanov, and R. Langer. A potential approach for decreasing the burst effect of protein from PLGA microspheres. J. Pharm. Sci., 92:1582–1591, 2003.CrossRefGoogle Scholar
  62. [62]
    K. Fu, A.M. Klibanov, and R. Langer. Protein stability in controlled-release systems. Nat. Biotechnol., 18:24–25, 2000a.CrossRefGoogle Scholar
  63. [63]
    K. Fu, D.W. Pack, A.M. Klibanov, and R. Langer. Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm. Res., 17(1):100–106, 2000b.CrossRefGoogle Scholar
  64. [64]
    R.P. Gilliard, K. Kim, and R.J. RTurnball. Spherical hydrogen pellet generator for magnetic confinement fusion research. Rev. Sci. Instrum., 52:183–190, 1981.CrossRefGoogle Scholar
  65. [65]
    A. Göpferich, M.J. Alonso, and R. Langer. Development and characterization of microencapsulated microspheres. Pharm. Res., 11:1568–1574, 1994.CrossRefGoogle Scholar
  66. [66]
    A. Gopferich and R. Langer. Modeling of Polymer Erosion. Macromolecules, 26(16):4105–4112, 1993.CrossRefGoogle Scholar
  67. [67]
    B. Guiziou, D.J. Armstrong, P.N.C. Elliot, J.L. Ford, and C. Rostron. Investigation of in-vitro release characteristics of NSAID-loaded polylactic acid microspheres. J. Microencapsul., 13(6):701–708, 1996.Google Scholar
  68. [68]
    J.L. Guttman, C.D. Hendricks, K. Kim, and R.J. Turnbull. An investigation of the effects of system parameters on the production of hollow hydrogen droplets. J. Appl. Phys., 50(6):4139–42, 1979.CrossRefGoogle Scholar
  69. [69]
    J. Hanes, M. Chiba, and R. Langer. Synthesis and characterization of degradable anhydride-co-imide terpolymers containing trimellitylimido-L-typrosine: novel polymers for drug delivery. Macromolecules, 29:5279–5287, 1996.CrossRefGoogle Scholar
  70. [70]
    J. Hanes, M. Chiba, and R. Langer. Degradation of porous poly(anhydride-co-imide) microspheres and implications for controlled macromolecule delivery. Biomaterials, 19:163–172, 1998.CrossRefGoogle Scholar
  71. [71]
    D. Hartigan-O’Connor, and J.S. Chamberlain. Progress toward gene therapy of Duchenne muscular dystrophy. Seminars Neurol., 19(3):323–3332, 1999.Google Scholar
  72. [72]
    P. He, S.S. Davis, and L. Illum. Chitosan microspheres prepared by spray drying. Int. J. Pharma., 187:53–65, 1999.CrossRefGoogle Scholar
  73. [73]
    M.L. Hedley, J. Curley, and R. Urban. Microspheres containing plasmid-encoded antigens elicit cytotoxic T-cell responses. Nat. Medicine, 4:365–368, 1998.CrossRefGoogle Scholar
  74. [74]
    M. Higaki, Y. Azechi, T. Takase, R. Igarashi, S. Nagahara, A. Sano, K. Fujioka, N. Nakagawa, C. Aizawa, and Y. Mizushima. Collagen minipellet as a controlled release delivery system for tetanus and diphtheria toxoid. Vaccine, 19(23–24):3091–3096, 2001.CrossRefGoogle Scholar
  75. [75]
    S. Hirosue, B.G. Muller, R.C. Mulligan, and R. Langer. Plasmid DNA encapsulation and release from solvent diffusion nanospheres. J. Control. Rel., 70(1–2):231–242, 2001.CrossRefGoogle Scholar
  76. [76]
    I. Jabbal-Gill, W. Lin, P. Jenkins, P. Watts, M. Jimenez, L. Illum, S.S. Davis, J.M. Wood, D. Major, P.D. Minor and others. Potential of polymeric lamellar substrate particles (PLSP) as adjuvants for vaccines. Vaccine, 18(3–4):238–250, 1999.CrossRefGoogle Scholar
  77. [77]
    R.A. Jain, C.T. Rhodes, A.M. Railkar, A.W. Malick, and N.H. Shah. Controlled release of drugs from injectable in situ formed biodegradable PLGA microspheres: effect of various formulation variables. Europ. J. Pharm. Biopharm., 50(2):257–262, 2000.CrossRefGoogle Scholar
  78. [78]
    K.Y. Jang, K. Kim, and R.S. Upadhye. Study of sol-gel processing for fabrication of hollow silica-aerogel spheres. J. Vac. Sci., Technol. A, 8(3):1732–1735, 1990.CrossRefGoogle Scholar
  79. [79]
    W. Jiang and S.P. Schwendeman. Stabilization and controlled release of bovine serum albumin encapsulated in poly(D, L-lactide) and poly(ethylene glycol) microsphere blends. Pharm. Res., 18(6):878–885, 2001a.CrossRefGoogle Scholar
  80. [80]
    W. Jiang and S.P. Schwendeman. Stabilization and controlled release of bovine serum albumin encapsulated in poly(D,L-lactide) and poly(ethylene glycol) microsphere blends. Pharm. Res., 18:878–885, 2001b.CrossRefGoogle Scholar
  81. [81]
    W.S. Jiang and P. Steven. Stabilization of a model formalinized protein antigen encapsulated in poly(lactideco-glycolide)-based microspheres. J. Pharm. Sci., 90(10):1558–1569, 2001.CrossRefGoogle Scholar
  82. [82]
    B.G. Jones, P.A. Dickinson, M. Gumbleton, and I.W. Kellaway. The inhibition of phagocytosis of respirable microspheres by alveolar and peritoneal macrophages. Int. J. Pharm., 236:65–79, 2002.CrossRefGoogle Scholar
  83. [83]
    K. Kane, J. Lloyd, M. Zaffran, L. Simonsen, and M. Kane. Transmission of Hepatitis B, Hepatitis C and Human Immunodeficiency Viruses through unsafe Injections in the Developing World: Model-Based Regional Estimates. Bulletin of the World Health Organization. Vol. 77, no. 10, pp. 801–807, 1999.Google Scholar
  84. [84]
    J. Kang and S.P. Schwendeman. Comparison of the effects of Mg(OH)2 and sucrose on the stability of bovine serum albumin encapsulated in injectable poly(D,L-lactide-co-glycolide) implants. Biomaterials, 23(1):239–245, 2001.CrossRefGoogle Scholar
  85. [85]
    K. Kim, K.Y. Jang, and R.S. Upadhye. Hollow silica spheres of controlled size and porosity by sol-gel processing. J. Am. Ceram. Soc., 74(8):1987–1992, 1991.CrossRefGoogle Scholar
  86. [86]
    K. Kim and R.J. Turnbull. Generation of charged drops of insulating liquids by electrostatic spraying. J. Appl. Phys., 47(5):1964–1969, 1976.CrossRefGoogle Scholar
  87. [87]
    N.K. Kim, K. Kim, D.A. Payne, and R.S. Upadhye. Fabrication of hollow silica aerogel spheres by a droplet generation method and sol-gel processing. J. Vac. Sci., Technol. A, 7(3):1181–1184, 1989.CrossRefGoogle Scholar
  88. [88]
    T.W. King and C.W. Patrick, Jr. Development and in vitro characterization of vascular endothelial growth factor (VEGF)-loaded poly(DL-lactic-co-glycolic acid)/polyethylene glycol microspheres using a solid encapsulation/single emulsion/solvent extraction technique. J. Biomed. Materials Res., 51(3):383–390, 2000.CrossRefGoogle Scholar
  89. [89]
    M.J. Kipper, E. Shen, A. Determan, and B. Narasimhan. Design of an Injectable System Based on Bioerodible Polyanhydride Microspheres for Sustained Drug Delivery. Biomaterials, 23:4405–4412, 2002.CrossRefGoogle Scholar
  90. [90]
    J.E. Kirwan, T.A. Lee, G.N. Schroering, H. Krier, J.E. Peters, J.P. Renie, and K. Kim. An experimental and theoretical study of a monodisperse spray. AIAA J. Propulsion Power, 4:299–307, 1988.Google Scholar
  91. [91]
    N.L. Kumar, S. Robert, and J. Domb Abraham. Polyanhydrides: an overview. Adv. Drug Delivery Rev., 54(7):889–910, 2002.CrossRefGoogle Scholar
  92. [92]
    J.K. Lalla and K. Sapna. Biodegradable microspheres of poly(dl-lactic acid) containing piroxicam as a model drug for controlled release via the parenteral route. J. Microencapsul., 10(4):449–460, 1993.Google Scholar
  93. [93]
    X.M.D. Lam, T. Eileen, and Jeffrey L. Cleland. Encapsulation and stabilization of nerve growth factor into poly(lactic-co-glycolic) acid microspheres. J. Pharm. Sci., 90(9):1356–1365, 2001.CrossRefGoogle Scholar
  94. [94]
    G. Lambert, E. Fattal, A. Pinto-Alphandary, A. Gulik, and T. Couvreur. Polyisobutylcyanoacrylate nanocapsules containing an aqueous core as a novel colloidal carrier for delivery of oligonucleotides. Pharm. Res., 17(6):707–714, 2000.CrossRefGoogle Scholar
  95. [95]
    P. Le Corre, P. Le Guevello, V. Gajan, F. Chevanne, and R. Le Verge. Preparation and characterization of bupivacaine-loaded polylactide and poly(lactide-glycolide) microspheres. Internat. J. Pharm., 107(1):41–49, 1994.CrossRefGoogle Scholar
  96. [96]
    K. Leach, K. Noh, and E. Mathiowitz. Effect of manufacturing conditions on the formation of double-walled polymer microspheres. J. Microencapsul, 16(2):153–167, 1999.CrossRefGoogle Scholar
  97. [97]
    K.J. Leach and E. Mathiowitz. Degradation of double-walled polymer microspheres of PLLA and P(CPP:SA)20:80. I. In vitro degradation. Biomaterials, 19(21):1973–1980, 1998a.CrossRefGoogle Scholar
  98. [98]
    K.J. Leach and E. Mathiowitz. Degradation of double-walled polymer microspheres of PLLA and P(CPP:SA)20:80. I. In vitro degradation. Biomaterials, 19:1973–1980, 1998b.CrossRefGoogle Scholar
  99. [99]
    K.J. Leach, S. Takahashi, and E. Mathiowitz. Degradation of double-walled polymer microspheres of PLLA and P(CPP:SA)20:80. II. In vivo degradation. Biomaterials, 19(21):1981–1988, 1998a.CrossRefGoogle Scholar
  100. [100]
    K.J. Leach, S. Takahashi, and E. Mathiowitz. Degradation of double-walled polymer microspheres of PLLA and P(CPP:SA)20:80. II. In vivo degradation. Biomaterials, 19:1981–1988, 1998b.CrossRefGoogle Scholar
  101. [101]
    H.K. Lee, J.H. Park, and K.C. Kwon. Double-walled microparticles for single shot vaccine. J. Control. Rel., 44(2–3):283–293, 1997.Google Scholar
  102. [102]
    S.C. Lee, J.T. Oh, M.H. Jang, and S.I. Chung. Quantitative analysis of polyvinyl alcohol on the surface of poly(D,L-lactide-co-glycolide) microspheres prepared by solvent evaporation method: effect of particle size and PVA concentration. J. Control. Rel., 59:123–132, 1999.CrossRefGoogle Scholar
  103. [103]
    T.H. Lee, J. Wang, and C. Wang. Double-walled microspheres for the sustained release of a highly water soluble drug: characterization and irradiation studies. J. Control. Rel., 83:437–52, 2002a.CrossRefGoogle Scholar
  104. [104]
    T.H. Lee, J. Wang, and C.-H. Wang. Double-walled microspheres for the sustained release of a highly water soluble drug: characterization and irradiation studies. J. Control. Rel., 83:437–452, 2002b.CrossRefGoogle Scholar
  105. [105]
    N. Leelarasamee, S.A. Howard, C.J. Malanga, and J.K.H. Ma. A method for the preparation of polylactic acid microcapsules of controlled particle size and drug loading. J. Microencapsul., 5:147–157, 1988.Google Scholar
  106. [106]
    C.S. Lengsfeld and T.J. Anchordoquy. Shear-induced degradation of plasmid DNA. J. Pharm. Sci., 91:1581–1589, 2002.CrossRefGoogle Scholar
  107. [107]
    X. Li, Deng Xianmo, Yuan Minglong, Xiong Chengdong, Huang Zhitang, Zhang Yanhua, and W. Jia. In vitro degradation and release profiles of poly-DL-lactide-poly(ethylene glycol) microspheres with entrapped proteins. J. App. Poly. Sci., 78(1):140–148, 2000.CrossRefGoogle Scholar
  108. [108]
    X.Z. Li, Y.R. Yan, W. Jia, M. Yuan, X. Deng, and Z. Huang. Influence of process parameters on the protein stability encapsulated in poly-DL-lactide-poly(ethylene glycol) microspheres. J. Control. Rel., 68(1):41–52, 2000.CrossRefGoogle Scholar
  109. [109]
    R.T. Liggins and H.M. Burt. Paclitaxel loaded poly(L-lactic acid) microspheres: properties of microspheres made with low molecular weight polymers. Internat. J. Pharm., 222(1):19–33, 2001.CrossRefGoogle Scholar
  110. [110]
    R.T. Liggins, S. D’Amours, J.S. Demetrick, L.S. Machan, and H.M. Burt. Paclitaxel loaded poly(l-lactic acid) microspheres for the prevention of intraperitoneal carcinomatosis after a surgical repair and tumor cell spill. Biomaterials, 21:1959–1969, 2000.CrossRefGoogle Scholar
  111. [111]
    D.W. Lim and T.W. Park. Stereocomplex formation between enantiomeric PLA-PEG-PLA triblock copolymers: characterization and use as protein-delivery microparticulate carriers. J. App. Polymer Sci., 75(13):1615–1623, 2000.CrossRefGoogle Scholar
  112. [112]
    S.Y. Lin, K.S. Chen, H.H. Teng, M.J. Li. In vitro degradation and dissolution behaviours of microspheres prepared by three low molecular weight polyesters. J. Microencapsul., 17(5):577–586, 2000.CrossRefGoogle Scholar
  113. [113]
    Y. Liu, X. Deng. Influences of preparation conditions on particle size and DNA-loading efficiency for poly(-lactic acid-polyethylene glycol) microspheres entrapping free DNA. J. Control. Rel., 83(1):147–155, 2002.CrossRefGoogle Scholar
  114. [114]
    S. Lofthouse. Immunological aspects of controlled antigen delivery. Ad. Drug Delivery Rev., 54(6):863–870, 2002.CrossRefGoogle Scholar
  115. [115]
    L. Lunsford, U. McKeever, V. Eckstein, M.L. Hedley. Tissue distribution and persistence in mice of plasmid DNA encapsulated in a PLGA-based microsphere delivery vehicle. J. Drug Targeting, 8:39–50, 2000.CrossRefGoogle Scholar
  116. [116]
    D.W.-M. Luo Kim, Nadya Belcheva, W. Mark Saltzman. Controlled DNA delivery systems. Pharm. Res., 16(8):1300–1308, 1999.CrossRefGoogle Scholar
  117. [117]
    G.H. Ma, Z.G. Su, S. Omi, D. Sundberg, and J. Stubbs. Microencapsulation of oil with poly(styrene-N, N-dimethylaminoethyl methacrylate) by SPG emulsification technique: Effect of conversion and composition of oil phase. J. Colloid Interface Sci., 266:282–294, 2003CrossRefGoogle Scholar
  118. [118]
    K. Mabuchi, A. Nakayama, and K. Iwamoto. Preparation and in vitro evaluation of poly(lactic acid) microspheres containing carmofur. Yakuzaigaku, 54(1):42–48, 1994.Google Scholar
  119. [119]
    H.-Q. Mao, K. Roy, S.M. Walsh, J.T. August, and K.W. Leong. DNA-Chitosan Nanospheres for Gene Delivery. Proceedeeings Intern. Symp. Control. Rel. Bioact. Mater., 23:401–402, 1996.Google Scholar
  120. [120]
    S.M. Marinakos, J.P. Novak, L.C. Brousseau, A.B. House, E.M. Edeki, J.C. Feldhaus, and D.L. Feldheim. Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation. J. Am. Chem. Soc., 121:8518–8522, 1999.CrossRefGoogle Scholar
  121. [121]
    E. Mathiowitz, J.S. Jacob, Y.S. Jong, G.P. Carino, D.E. Chickering, P. Chaturvedi, C.A. Santos, K. Vijayaraghavan, S. Montgomery, M. Bassett and others. Biologically erodable microspheres as potential oral drug delivery systems. Nature, 386:410–414, 1997.CrossRefGoogle Scholar
  122. [122]
    E. Mathiowitz and R. Langer. Massachusetts Institute of Technology, assignee. 1999. Multiwall polymeric microspheres. U.S.A. patent 5,912,017.Google Scholar
  123. [123]
    R.C. Mehta, B.C. Thanoo, and P.P. DeLuca. Peptide containing microspheres from low molecular weight and hydrophilic poly(D,L-lactide-co-glycolide). J. Control. Rel., 41(3):249–257, 1996.CrossRefGoogle Scholar
  124. [124]
    M. Morlock, T. Kissel, Y.X. Li, H. Koll, and G. Winter. Erythropoietin loaded microspheres prepared from biodegradable LPLG-PEO-LPLG triblock copolymers: protein stabilization and in-vitro release properties. J. Control. Rel., 56(1–3):105–115, 1998.CrossRefGoogle Scholar
  125. [125]
    J.S. Moynihan, J. Blair, A. Coombes, F. D’Mello, and C.R. Howard. Enhanced immunogenicity of a hepatitis B virus peptide vaccine using oligosaccharide ester derivative microparticles. Vaccine, 20(13–14):1870–1876, 2002.CrossRefGoogle Scholar
  126. [126]
    L. Mu and S.S. Feng. Fabrication, characterization and in vitro release of paclitaxel(Taxol r®) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. J. Control. Rel., 76:239–254, 2001.CrossRefGoogle Scholar
  127. [127]
    R.J. Mumper and A.P. Rolland. Plasmid delivery to muscle: recent advances in polymer delivery systems. Adv. Drug Del. Rev., 30:151–172, 1998.CrossRefGoogle Scholar
  128. [128]
    R. Narayani and K. Panduranga Rao. Gelatin microsphere cocktails of different sizes for the controlled release of anticancer drugs. Int. J. Pharm., 143:255–258, 1996.CrossRefGoogle Scholar
  129. [129]
    D.F. Nixon, C. Hioe, and P.-D. Chen. Synthetic peptides entrapped in microparticles can elicit cytotoxic T cell activity. Vaccine, 14:1523–1530, 1996.CrossRefGoogle Scholar
  130. [130]
    M. Nof and L.D. Shea. Drug-release scaffolds fabricated form drug-loaded microspheres. J. Biomed. Mat. Res., 59:349–356, 2002.CrossRefGoogle Scholar
  131. [131]
    P.B. O’Donnell and J.W. McGinity. Preparation of microspheres by the solvent evaporation technique. Adv. Drug Del. Rev., 28:25–42, 1997.CrossRefGoogle Scholar
  132. [132]
    K.J. Pekarek, J.S. Jacob, and E. Mathiowitz. Double-walled polymer microspheres for controlled drug release. Nature, 367(6460):258–60, 1994a.CrossRefGoogle Scholar
  133. [133]
    K.J. Pekarek, J.S. Jacob, and E. Mathiowitz. Double-walled polymer microspheres for controlled drug release. Nature, 367:258–260, 1994b.CrossRefGoogle Scholar
  134. [134]
    K.J. Pekarek, J.S. Jacob, and E. Mathiowitz. One-step preparation of double-walled microspheres. Adv. Mater., 6:684–687, 1994c.CrossRefGoogle Scholar
  135. [135]
    C. Perez and K. Griebenow. Effect of salts on lysozyme stability at the water-oil interface and upon encapsulation in poly(lactic-co-glycolic) acid microspheres. Biotechnol. Bioeng., 82(7):825–832, 2003.CrossRefGoogle Scholar
  136. [136]
    C.M. Nashbly, Perez-Rodriguez, Karilys Gonzalez, Kai Griebenow. Stabilization of a-chymotrypsin at the CH2Cl2/water interface and upon water-in-oil-in-water encapsulation in PLGA microspheres. J. Control. Rel., 89(1):71–85, 2003.CrossRefGoogle Scholar
  137. [137]
    D. Perumal, C.M. Dangor, R.S. Alcock, N. Hurbans, and K.R. Moopanar. Effect of formulation variable on in vitro drug release and micromeritic properties of modified release ibuprofen microspheres. J. Microencapsul., 16(4):475–487, 1999.CrossRefGoogle Scholar
  138. [138]
    N. Puri, J.H. Kou, and P.J. Sinko. Adjuvancy enhancement of muramyl dipeptide by modulating its release from a physicochemically modified matrix of ovalbumin microspheres I. In vitro characterization. J. Control. Rel., 69(1):53–67, 2000.CrossRefGoogle Scholar
  139. [139]
    N. Puri and P.J. Sinko. Adjuvancy enhancement of muramyl dipeptide by modulating its release from a physicochemically modified matrix of ovalbumin microspheres II. In vivo investigation. J. Control. Rel., 69(1):69–80, 2000.CrossRefGoogle Scholar
  140. [140]
    F. Quaglia, G. De Rosa, E. Granata, F. Ungaro, E. Fattal, and M.I. La Rotonda. Feeding liquid, non-ionic surfactant and cyclodextrin affect the properties of insulin-loaded poly(lactide-co-glycolide) microspheres prepared by spray-drying. J. Control. Rel., 86:267–278, 2003.CrossRefGoogle Scholar
  141. [141]
    R. Raghuvanshi, Y. Katare, K. Lalwani, M. Ali, O. Singh, and A. Panda. Improved immune response from biodegradable polymer particles entrapping tetanus toxoid by use of different immunization protocol and adjuvants. Internat. J. Pharm., 245(1–2):109–121, 2002.CrossRefGoogle Scholar
  142. [142]
    L. Ramachandra, R. Song, and C.V. Harding. Phagosomes are fully competent antigen-processing organelles that mediate the formation of peptide class II MHC complexes. J. Immunol., 162:3263–3272, 1999.Google Scholar
  143. [143]
    C. Raman, C. Berkland, K.K. Kim, and D.W. Pack. Modeling small-molecule release from PLG microspheres: effects of polymer degradation and non-uniform drug distribution. 2004 (submitted).Google Scholar
  144. [144]
    H.B. Ravivarapu, K. Burton, and P.P. DeLuca. Polymer and microsphere blending to alter the release of a peptide from PLGA microspheres. Eur. J. Pharm., 50:263–270, 2000.CrossRefGoogle Scholar
  145. [145]
    L. Rayleigh. Proc. London Math. Soc., 10:4, 1879.CrossRefGoogle Scholar
  146. [146]
    L. Rayleigh. Phil. Mag. S.G., 14:184, 1882.Google Scholar
  147. [147]
    H. Sah. Protein instability toward organic solvent/water emulsification: implications for protein microencapsulation into microspheres. J. Pharm. Sci. Tech., 53(1):3–10, 1999.MathSciNetGoogle Scholar
  148. [148]
    W.M. Saltzman. Drug Delivery: Engineering Principles for Drug Therapy. New York, Oxford University Press. 2001.Google Scholar
  149. [149]
    A. Sanchez, R.K. Gupta, M.J. Alonso, G.R. Siber, and R. Langer. Pulsed controlled-release system for potential use in vaccine delivery. J. Pharm. Sci., 85(6):547–552, 1996a.CrossRefGoogle Scholar
  150. [150]
    A. Sanchez, R.K. Gupta, M.J. Alonso, G.R. Siber, and R. Langer. Pulsed controlled-release system for potential use in vaccine delivery. J. Pharm. Sci., 85:547–552, 1996b.CrossRefGoogle Scholar
  151. [151]
    M. Sandor, D. Enscore, P. Weston, and E. Mathiowitz. Effect of protein molecular weight on release from micron-sized PLGA microspheres. J. Control. Rel., 76:297–311, 2001.CrossRefGoogle Scholar
  152. [152]
    P. Sansdrap and A.J. Moes. Influence of manufacturing parameters on the size characteristics and the release profiles of nifedipine from poly(DL-lactide-co-glycolide) microspheres. Int. J. Pharm., 98:157–164, 1993.CrossRefGoogle Scholar
  153. [153]
    S.P. Schwendeman. Recent advances in the stabilization of proteins encapsulated in injectable PLGA delivery systems. Crit. Rev. Therapeut. Drug Carrier Sys., 19(1):73–98, 2002.CrossRefGoogle Scholar
  154. [154]
    P.G. Shao and L.C. Bailey. Stabilization of pH-induced degradation of porcine insulin in biodegradable polyester microspheres. Pharm. Devel. Tech., 4(4):633–642, 1999.CrossRefGoogle Scholar
  155. [155]
    L.D. Shea, E. Smiley, J. Bonadio, and D.J. Mooney. DNA delivery from polymer matrices for tissue engineering. Nat. Biotechnol., 17:551–554, 1999.CrossRefGoogle Scholar
  156. [156]
    E. Shen, M.J. Kipper, B. Dziadul, M.-K. Lim, and B. Narasimhan. Mechanistic Relationships between Polymer Microstructure and Drug Release Kinetics in Bioerodible Polyanhydrides. J. Control. Rel., 82:115–125, 2002.CrossRefGoogle Scholar
  157. [157]
    A. Shenderova, T.G. Burke, and S.P. Schwendeman. The acidic microclimate in poly(lactide-co-glycolide) microspheres stabilizes camptothecins. Pharm. Res., 16(2):241–248, 1999.CrossRefGoogle Scholar
  158. [158]
    L. Shi, M.J. Caulfield, R.T. Chern, R.A. Wilson, G. Sanyal, and D.B. Volkin. Pharmaceutical and immunological evaluation of a single-shot hepatitis B vaccine formulated with PLGA microspheres. J. Pharm. Sci., 91(4):1019–1035, 2002.CrossRefGoogle Scholar
  159. [159]
    K. Shiga, N. Muramatsu, and T. Kondo. Preparation of poly(D,L-lactide) and copoly(lactide-glycolide) microspheres of uniform size. J. Pharm. Pharmacol., 48:891–895, 1996.Google Scholar
  160. [160]
    L. Slobbe, N. Medlicott, E. Lockhart, N. Davies, I. Tucker, M. Razzak, and G. Buchan. A prolonged immune response to antigen delivered in poly (epsilon-caprolactone) microparticles. Immun. Cell Biol., 81(3):185–191, 2003.CrossRefGoogle Scholar
  161. [161]
    G. Spenlehauer, M. Vert, J.P. Benoit, and A. Boddaert. In vitro and in vivo degradation of poly(DLlactide/glycolide) type microspheres made by solvent evaporation method. Biomaterials, 10(8):557–563, 1989.CrossRefGoogle Scholar
  162. [162]
    C. Sturesson, P. Artursson, R. Ghaderi, K. Johansen, A. Mirazimi, I. Uhnoo, L. Svensson, A.-C. Albertsson, and J. Carlfors. Encapsulation of rotavirus into poly(lactide-co-glycolide) microspheres. J. Control. Rel., 59(3):377–389, 1999.CrossRefGoogle Scholar
  163. [163]
    C.C. Sturesson J. Incorporation of protein in PLG microspheres with retention of bioactivity. J. Control. Rel., 67(2–3):171–178, 2000.CrossRefGoogle Scholar
  164. [164]
    A. Supsakulchai, G.H. Ma, M. Nagai, and S. Omi. Preparation of uniform titanium dioxide (TiO2) polystyrene-based composite particles using the glass membrance emulsification process with a subsequent suspension polymerization. J. Microencapsul., 20:1–18, 2003.CrossRefGoogle Scholar
  165. [165]
    K. Suzuki and J.C. Price. Microencapsulation and dissolution properties of a neuroleptic in a biodegradable polymer poly(dl-lactide). J. Pharm. Sci., 74:21–24, 1985.CrossRefGoogle Scholar
  166. [166]
    Y. Tabata, S. Gutta, and R. Langer. Controlled delivery systems for proteins using polyanhydride microspheres. Pharm. Res., 10:487–495, 1993.CrossRefGoogle Scholar
  167. [167]
    Y. Tabata and R. Langer. Polyanhydride microspheres that display near-constant release of water-soluble model drug compounds. Pharm. Res., 10(3):391–399, 1993a.CrossRefGoogle Scholar
  168. [168]
    Y. Tabata and R. Langer. Polyanhydride microspheres that display near-constant release of water-soluble model drug compounds. Pharm. Res., 10:391–399, 1993b.CrossRefGoogle Scholar
  169. [169]
    J.A. Tamada and R. Langer. Erosion kinetics of hydrolytically degradable polymers. Proc. Natl. Acad. Sci., 90(2):552–556, 1993.CrossRefGoogle Scholar
  170. [170]
    A. Thermet, C. Rollier, F. Zoulim, C. Trepo, and L. Cova. Progress in DNA vaccine for prophylaxis and therapy of hepatitis B. Vaccine, 21(7–8):659–662, 2003.CrossRefGoogle Scholar
  171. [171]
    A.M. Tinsley-Brown, R. Fretwell, A.B. Dowsett, S.L. Davis, and G.H. Farrar. Formulation of Poly(D,LLactic-Co-Glycolic Acid) Microparticles for Rapid Plasmid Plasmid DNA Delivery. J. Control. Rel., 66:229–241, 2000.CrossRefGoogle Scholar
  172. [172]
    A.M. Tinsley-Brown, V.A. Mobsby, M.C. Outlaw, and G.H. Farrar. DNA Release from PLGA Microparticles for Vaccine Applications. Proceed Int’l. Symp. Control. Rel. Bioact. Mater., vol. 26, pp. 344, 1999.Google Scholar
  173. [173]
    S. Torza and G. Mason. Three-phase interactions in shear and electrical fields. J. Colloid Int. Sci., 33:67–83, 1970.CrossRefGoogle Scholar
  174. [174]
    M.A. Tracy. Development and scale-up of a microsphere protein delivery system. Biotechnol. Prog., 14:108–115, 1998.MathSciNetCrossRefGoogle Scholar
  175. [175]
    M. Tuncay, S. Calis, H.S. Kas, M.T. Ercan, I. Peksoy, and A.A. Hincal. Diclofenac sodium incorporated PLGA (50:50) microspheres: formulation considerations and in vitro/in vivo evaluation. Int. J. Pharm., 195:179–188, 2000.CrossRefGoogle Scholar
  176. [176]
    R.G. Vile, S.J. Russell, and N.R. Lemoine. Cancer gene therapy: hard lessons and new courses. Gene Therapy, 7:2–8, 2000.CrossRefGoogle Scholar
  177. [177]
    R.G. Vile, A. Tuszynski, and S. Castleden. Retroviral vectors: from laboratory tools to molecular medicines. Molec. Biotechnol., 5:139–158, 1996.Google Scholar
  178. [178]
    B.W. Wagenaar and B.W. Muller. Piroxicam release from spray-dried biodegradable microspheres. Biomaterials, 15(1):49–54, 1994.CrossRefGoogle Scholar
  179. [179]
    M.C. Walsh, J.A. Banas, and S.P. Mudzinski. A two-component modular approach for enhancing T-cell activiation utilizing a unique anti-FcgRI-streptavidin construct and microspheres coated with biotinylatedantigen. Biomolec. Eng., 20:21–33, 2003.CrossRefGoogle Scholar
  180. [180]
    E. Walter, K. Moelling, J. Pavlovic, and H.P. Merkle. Poly(D,L-lactide-co-glycolide)-Encapsulated DNA: Stability and Release Characteristics. Proceedings Int’l. Symp. Control. Rel. Bioact. Mater., vol. 26, pp. 6407, 1999.Google Scholar
  181. [181]
    J.-P. Wan, Y.-Y. Yang, T.-S. Chung, D. Tan, S. Ng, and J. Heller. POE-PEG-POE triblock copolymeric microspheres containing protein. II. Polymer erosion and protein release mechanism. J. Control. Rel., 75:115–128, 2001.CrossRefGoogle Scholar
  182. [182]
    D.R. Wang, R. Deborah. Glen S. Kwon, and John Samuel. Encapsulation of plasmid DNA in biodegradable poly(D,L-lactic-co-glycolic acid) microspheres as a novel approach for immunogene delivery. J. Control. Rel., 57(1):9–18, 1999.CrossRefGoogle Scholar
  183. [183]
    F.J. Wang and C.H. Wang. Sustained release of etanidazole from spray dried microspheres prepared by non-halogenated solvents. J. Control. Rel., 81:263–280, 2002.Google Scholar
  184. [184]
    J. Wang, B.M. Wang, and S.P. Schwendeman. Characterization of the initial burst release of a model peptide from poly(dl-lactide-co-glycolide) microspheres. J. Control. Rel., 82(2–3):289–307, 2002.CrossRefGoogle Scholar
  185. [185]
    J. Wang, B.W. Wang, and S.P. Schwendeman. Mechanistic evaluation of the glucose-induced reduction in initial burst release of octreotide acetate from poly(D,L-lactide-co-glycolide) microspheres. Biomaterials, 25:1919–1927, 2004.CrossRefGoogle Scholar
  186. [186]
    G. Wei, G.J. Pettway, L.K. McCauley, and P.X. Ma. The release profiles and bioactivity of parathyroid hormone from poly(lactic-co-glycolic acid) microspheres. Biomaterials, 25:345–352, 2004.CrossRefGoogle Scholar
  187. [187]
    M. Wolf, M. Wirth, F. Pittner, and F. Gabor. Stabilisation and determination of the biological activity of-asparaginase in poly(,-lactide-co-glycolide) nanospheres. Internat. J. Pharm., 256(1–2):141–152, 2003.CrossRefGoogle Scholar
  188. [188]
    J.A. Wolff, R.W. Malone, P. Williams, W. Chong, G. Acsadi, A. Jani, and P.L. Felgner. Direct gene transfer into mouse muscle in vivo. Science, 247:1465–1468, 1990.CrossRefGoogle Scholar
  189. [189]
    B.H. Woo, J.W. Kostanski, S. Gebrekidan, B.A. Dani, B.C. Tahanoo, and P.P. DeLuca. Preparation, characterization and in vivo evaluation of 120-day poly(dl-lactide) leuprolide microspheres. J. Control. Rel., 75:307–315, 2001.CrossRefGoogle Scholar
  190. [190]
    J.P. Woosley, K. Kim, and R.J. Turnbull. Techniques for generating uniform charged particles of hydrogen isotopes. J. Electrostat., 5:381–389, 1978.CrossRefGoogle Scholar
  191. [191]
    I. Yamakawa, Y. Tsushima, R. Machida, and S. Watanabe. In vitro and in vivo release of poly(DL-lactic acid) microspheres containing neurotensin analogue prepared by novel oil-in-water solvent evaporation method. J. Pharm. Sci., 81(8):808–811, 1992.CrossRefGoogle Scholar
  192. [192]
    Y.Y. Yang, T.S. Chung, and N. Ng. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials, 22(3):231–241, 2001a.CrossRefGoogle Scholar
  193. [193]
    Y.-Y. Yang, M. Shi, S.-H. Goh, S. Moochhala, S. Ng, and J. Heller. POE/PLGA composite microspheres: formation and in vitro behavior of double walled microspheres. J. Control. Rel., 88(2):201–213, 2003a.CrossRefGoogle Scholar
  194. [194]
    Y.-Y. Yang, M. Shi, S.-H. Goh, S.M. Moochhala, S. Ng, and J. Heller. POE/PLGA composite microspheres: formation and in vitro behavior of double walled microspheres. J. Control. Rel., 88:201–213, 2003b.CrossRefGoogle Scholar
  195. [195]
    Y.-Y. Yang, J.-P. Wan, T.-S. Chung, P.K. Pallathadka, S. Ng, and J. Heller. POE-PEG-POE triblock copolymeric microspheres containing protein: I. preparation and characterization. J. Control. Rel., 75:115–128, 2001b.CrossRefGoogle Scholar
  196. [196]
    K.R. Young and T.M. Ross. Particle-based vaccines for HIV-1 infection. Current Drug Targets: Infectious Disorders, 3(2):151–169, 2003.CrossRefGoogle Scholar
  197. [197]
    X.-J. Yu, C. Luo, J.-C. Lin, P. Hao, Y.-Y. He, Z.-M. Guo, L. Qin, J. Su, B.-S. Liu, Y. Huang, and others. Putative hAPN receptor binding sites in SARS CoV spike protein. Acta Pharmacolog. Sinica, 24(6):481–488, 2003.Google Scholar
  198. [198]
    S. Zhou and X. Deng. In vitro degradation characteristics of poly-lactide-poly(ethylene glycol) microspheres containing human serum albumin. Reac. Funct. Poly., 51(2–3):93–100, 2002.CrossRefGoogle Scholar
  199. [199]
    S.D. Zhou, Xianmo, Minglong Yuan, and Xiaohong Li. Investigation on preparation and protein release of biodegradable polymer microspheres as drug-delivery system. J. App. Polymer Sci., 84(4):778–784, 2002.CrossRefGoogle Scholar
  200. [200]
    G. Zhu, S.R. Mallery, and S.P. Schwendeman. Stabilization of proteins encapsulated in injectable poly(lactide-co-glycolide). Nature Biotechnol., 18(1):52–57, 2000.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Kyekyoon Kevin Kim
    • 1
  • Daniel W. Pack
    • 1
  1. 1.University of Illinois at Urbana-ChampaignUSA

Personalised recommendations