Nanomechanics and Tissue Pathology

  • Jason Sakamoto
  • Paolo Decuzzi
  • Francesco Gentile
  • Stanislav I. Rokhlin
  • Lugen Wang
  • Bin Xie
  • Mauro Ferrari


Nanotechnology is an emerging field that has been embraced by those in clinical medicine. The most novel aspect of nanotechnology is the ability to precisely fabricate devices on a physical scale heretofore only realized in science fiction. Most notable medical applications have involved micro-sized devices with integrated micro- and/or nano-scale features used for controlled drug delivery or biomolecular analysis. BioMEMS (Biological Micro-Electro-Mechanical Systems) devices have served as conduits for nanotechnology to enter clinical medicine. However, new theoretical applications will further assert nanotechnology as a multifaceted biomedical discipline.


Breast Cancer Granular Medium Malignant Tissue Breast Biopsy Tissue Pathology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Ferrari, V.T. Granik, A. Imam, and J.C. Nadeau. Advances in Doublet Mechanics, Springer-Verlag, New York, Inc., New York, 1997.zbMATHGoogle Scholar
  2. [2]
    H. Verkooijen et al. Interobserver variability between general and expert pathologists during the histopathological assessment of large-core needle and open biopsies of non-palpable breast lesions. Eur. J. Can., 39:2187–2191, 2003.CrossRefGoogle Scholar
  3. [3]
    M. Piver et al. Comparative study of ovarian cancer histopathology by registry pathologists and referral pathologists: A study by the Gilda Radner Familial Ovarian Cancer Registry. Gynecol. Oncol. 78:166–170, 2000.CrossRefGoogle Scholar
  4. [4]
    R. Schlemper et al. Differences in diagnostic criteria for esophageal squamous cell carcinoma between Japanese and Western pathologists. Cancer, 88:996–1006, 2000.CrossRefGoogle Scholar
  5. [5]
    B. Dunne and J.J. Going. Scoring nuclear pleomorphism in breast cancer. Histopathology, 39:259–265, 2001.CrossRefGoogle Scholar
  6. [6]
    H. Tsuda et al. Evaluation of interobserver agreement in scoring immunohistochemical results of HER-2/neu (c-erbB-2) expression detected by HercepTest, Nichirei polyclonal antibody, CB11 and TAB250 in breast carcinoma. Pathol. Internat. 52:126–134, 2002.CrossRefGoogle Scholar
  7. [7]
    A. Paradiso et al. Interobserver reproducibility of immunohistochemical HER-2/neu evaluation in human breast cancer: the real-world experience. Internat. J. Biol. Mark. 19:147–154, 2004.Google Scholar
  8. [8]
    National Cancer Institute; “Breast Cancer (PDQ): Screening”, National Institute of Health; http://www.nci. pdq/screening/breast/HealthProfessional/page4 (2004).Google Scholar
  9. [9]
    Czyz, A.H. “Breast Cancer Diagnosis: Histologic Grades of Breast Cancer: Helping Determine a Patient’s Outcome”,; grades.asp?mode=1:http://imaginis. com/breasthealth/histologic grades.asp?mode=1; (2001).Google Scholar
  10. [10]
    S. Amatet al. Scarff-Bloom-Richardson (SBR) grading: a pleiotropic marker of chemosensitivity in invasive ductal breast carcinomas treated by neoadjuvant chemotherapy. Internat. J. Oncol. 20:791–796, 2002.Google Scholar
  11. [11]
    A. Douglas-Jones et al. Consistency in the observation of features used to classify duct carcinoma in situ (DCIS) of the breast. J. Clin. Pathol., 53:596–602, 2000.CrossRefGoogle Scholar
  12. [12]
    A. Volpi et al. Prognostic significance of biologic markers in node-negative breast cancer patients: a prospective study. Mod. Pathol., 17:1038–1044, 2004.CrossRefGoogle Scholar
  13. [13]
    H. Tsuda, E. Akiyama, M. Kurosumi, G. Sakamoto, and T. Watanabe. A quantitative model using mean and standard deviation for evaluation of interobserver agreement in nuclear atypia scoring of breast carcinomas in a protocol study. Pathol. Internat., 50:119–125, 2000.CrossRefGoogle Scholar
  14. [14]
    M. Sikka, S. Agarwal and A. Bhatia. Interobserver agreement of the Nottingham histologic grading scheme for infiltrating duct carcinoma breast. Ind. J. Can., 36:149–153, 1999.Google Scholar
  15. [15]
    H. Frierson et al. Interobserver reproducibility of the Nottingham modification of the Bloom and Richardson histologic grading scheme for infiltrating ductal carcinoma. Am. J. Clin. Pathol., 103:195–198, 1995.Google Scholar
  16. [16]
    R.P. Burns. Image-guided breast biopsy. Am. J. Surg., 173:9–11, 1997.CrossRefGoogle Scholar
  17. [17]
    F. Burbank. Stereotactic breast biopsy: Its history, its present, and its future. Am. Surg., 62:128–150, 1996.Google Scholar
  18. [18]
    R. Cotran, V. Kumar, and T. Collins. Pathologic Basis of Disease, 6th. Ed. 6th.W.B. Saunders, Philadelphia; 1999.Google Scholar
  19. [19]
    M.S. Brady et al. Patterns of detection in patients with cutaneous melanoma. Cancer, 89:342–347, 2000.CrossRefGoogle Scholar
  20. [20]
    C.M.K. Grin, A, B. Welkovich, and R. Bart. Accuracy of clinical diagnosis of malignant melanoma. Arch. Dermatol., 126:763–766, 1990.CrossRefGoogle Scholar
  21. [21]
    J.L. Bolognia, M. Berwick, and J.A. Fine. Complete follow-up and evaluation of a skin cancer screening in Connecticut. J. Am. Dermatol., 23:1098–1106, 1990.CrossRefGoogle Scholar
  22. [22]
    American Cancer Society, Vol. 2004 1–50, American Cancer Society, Atlanta; 2003.Google Scholar
  23. [23]
    M. Helfand, S.M. Mahon, K.B. Eden, P.S. Frame, and C.T. Orleans. Screening for skin cancer. Am. J. Preven. Med., 20:47–58, 2001.CrossRefGoogle Scholar
  24. [24]
    T.E. Andreoli, J. Loscalzo, C.C.J. Carpenter, and R.C. Griggs. Cecil Essentials of Medicine, 5th. Ed. W.B. Saunders Co, Philadelphia; 2000.Google Scholar
  25. [25]
    R. Cotran, V. Kumar, and T.C. Pathologic Basis of Disease, W.B. Saunders, Philadelphia; 1999.Google Scholar
  26. [26]
    C.R. Hill, J.C. Bamber, and G.R.t. Haar (eds.) Physical Principles of Medical Ultrasonics, John Wiley & Sons, Hoboken, NJ, 2004.Google Scholar
  27. [27]
    P.N.T. Wells. Ultrasonic imaging of the human body. Rep. Prog. Phys., 62:671–722, 1999.CrossRefGoogle Scholar
  28. [28]
    F.A. Duck. Physical Properties of Tissue. Academic Press, London, 1990.Google Scholar
  29. [29]
    S.A. Goss, R.L. Johnston, and F. Dunn. Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J. Acoust. Soc. Am., 64:423–457, 1978.CrossRefGoogle Scholar
  30. [30]
    A.P. Sarvazyan, O.V. Rudenko, S.D. Swanson, J.B. Fowlkes, and S.Y. Emelianov. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Ultrasound Med. Biol., 24:1419–1435, 1998.CrossRefGoogle Scholar
  31. [31]
    L. Sandrin, M. Tanter, S. Catheline, and M. Fink. Shear modulus imaging with 2-D transient elastography. IEEE Trans. Ultrason. Ferro. Freq. Contrl., 49:426–435, 2002.CrossRefGoogle Scholar
  32. [32]
    V.N. Alekseev and S.A. Rybak. Equations of state for viscoelastic biological media. Acoust. Phys., 48:511–547, 2002.CrossRefGoogle Scholar
  33. [33]
    T.L. Szabo and J. Wu. A model for longitudinal and shear wave propagation in viscoelastic media. J. Acoust. Soc. Am., 107:2437–2446, 2000.CrossRefGoogle Scholar
  34. [34]
    K.R. Waters, M.S. Hughes, J. Mobley, G.H. Brandenburger, and J.G. Miller. On the applicability of Kramers-Kronig relations for ultrasonic attenuation obeying a frequency power law. J. Acoust. Soc. Am., 108:556–563, 2000.CrossRefGoogle Scholar
  35. [35]
    T.L. Szabo. Causal theories and data for acoustic attenuation obeying a frequency power law. J. Acoust. Soc. Am., 97:14–24, 1995.CrossRefGoogle Scholar
  36. [36]
    A. Lavrentyev and S.I. Rokhlin. Determination of elastic moduli, density, attenuation, and thickness of a layer using ultrasonic spectroscopy at two angles. J. Acoust. Soc. Am., 102:3467–3477, 1997.CrossRefGoogle Scholar
  37. [37]
    L. Adler, K.V. Cook, and W.A. Simpson. In Research Techniques in Nondestructive Testing, Vol. 3. R.S. Wang (ed.) Academic Press, New York, 1977, pp. 1–49.Google Scholar
  38. [38]
    L. Wang and S.I. Rokhlin. Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media. Ultrasonics, 39:413–424, 2001.CrossRefGoogle Scholar
  39. [39]
    L.Wang, B. Xie, and S.I. Rokhlin. Determination of embedded layer properties using adaptive time-frequency domain analysis. J. Acoust. Soc. Am., 111:2644–2653, 2002.CrossRefGoogle Scholar
  40. [40]
    J. Liu. Biomedical Engineering, The Ohio State University, Columbus, 2002.Google Scholar
  41. [41]
    J. Liu and M. Ferrari. A discrete model for the high frequency elastic wave examination on biological tissue. CMES, 4:421–430, 2003.zbMATHGoogle Scholar
  42. [42]
    J. Liu and M. Ferrari. Mechanical spectral signatures of malignant disease? A small-sample, comparative study of continuum vs. nano-biomechanical data analyses. Dis. Mark., 18:175–183, 2002.Google Scholar
  43. [43]
    NDT Resource Center; “Basic Principles of Ultrasonic Testing”, Iowa State University:http://www.ndted. org/EducationResources/communitycollege/ultrasonics/introduction/description.htm; (2001).Google Scholar
  44. [44]
    A.F. van der Steen, M.H. Cuypers, J.M. Thijssen, and P.C. deWilde. Influence of histochemical preparation on acoustic parameters of liver tissue: a 5-MHz study. Ultrasou. Med. Biol., 17:879–891, 1991.CrossRefGoogle Scholar
  45. [45]
    S.I. Rokhlin and Y.J. Wang. Analysis of boundary conditions for elastic wave interaction with an interface between two solids. J. Acoust. Soc. Am., 503, 1991.Google Scholar
  46. [46]
    H.K.W. Koeppen et al. Overexpression of HER2/neu in solid tumours: an immunohistochemical survey. Histopathology, 38:96–104, 2001.CrossRefGoogle Scholar
  47. [47]
    N.E. Hynes and D.F. Stern. The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim. Biophys. Acta., 1198:165–184, 1994.Google Scholar
  48. I.F. Tannock and R.P. Hill. (eds.) The Basic Science of Oncology, 3rd Edn. McGraw-Hill, New York, 1998.Google Scholar
  49. [49]
    J.M.S. Bartlett et al. Evaluating HER2 Amplification and Overexpression in Breast Cancer. J. Pathol., 195:422–428, 2001.CrossRefGoogle Scholar
  50. [50]
    M. Pegram, G. Pauletti, and D.J. Slamon. HER-2/neu as a predictive marker of response to breast cancer therapy. Breast Can. Res. Treat., 52:65–77, 1998.CrossRefGoogle Scholar
  51. [51]
    S. Masood, and M.M. Bui. Prognostic and Predictive Value of HER2/neu Oncogene in Breast Cancer. Microsco. Res. Tech., 59:102–108, 2002.CrossRefGoogle Scholar
  52. [52]
    S. Menard, E. Tagliabue, M. Campiglio, and S.M. Pupa. Role of HER2 Gene Overexpression in Breast Carcinoma. J. Cell. Physiol., 182:150–162, 2000.CrossRefGoogle Scholar
  53. [53]
    R.M. Neve, H.A. Lane, and N.E. Hynes. The role of overexpressed HER2 in transformation. Ann. Oncol., 12:S9–S13, 2001.CrossRefGoogle Scholar
  54. [54]
    D.J. Slamon et al. Studies of the HER-2/neu Proto-Oncogene in Human Breast and Ovarian Cancer. Sci., New Series, 244:707–712, 1989.Google Scholar
  55. [55]
    G.M. Lanza et al. In vitro characterization of a novel, tissue-targeted ultrasonic contrast system with acoustic microscopy. J. Acoust. Soc. Am., 104:36–65, 1998.CrossRefGoogle Scholar
  56. [56]
    P.A. Dayton and K.W. Ferrara. Target imaging using ultrasound. J. Mag. Reson. Imag., 16:362–377, 2002.CrossRefGoogle Scholar
  57. [57]
    C.S. Hall et al. Experimental determination of phase velocity of perfluorocarbons: applications to targeted contrast agents. IEEE Trans. Ultraon. Ferroelect. Freq. Contr., 47:75–84, 2000.CrossRefGoogle Scholar
  58. [58]
    D.N. Patel, S.H. Bloch, P.A. Dayton, and K.W. Ferrara. Acoustic signatures of submicron contrast agents. IEEE Trans. Ultraon. Ferroelect. Freq. Contr., 51:293–301, 2004.CrossRefGoogle Scholar
  59. [59]
    E. Unger, T.O. Matsunaga, P.A. Schumann, and R. Zutsh. Microbubbles in molecular imaging and theraphy. Medicamundi, 47:58–65, 2003.Google Scholar
  60. [60]
    N. Marsh et al. Improvements in the ultrasonic contrast of targeted perfluorocarbon nanoparticles using an acoustic transmission line model. IEEE Trans. Ultraon. Ferroelect. Freq. Contr., 49:29–38, 2002.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Jason Sakamoto
    • 1
  • Paolo Decuzzi
    • 2
  • Francesco Gentile
    • 3
  • Stanislav I. Rokhlin
    • 4
  • Lugen Wang
    • 5
  • Bin Xie
    • 6
  • Mauro Ferrari
    • 7
    • 8
    • 9
    • 10
    • 11
  1. 1.Biomedical EngineeringThe Ohio State UniversityColumbus
  2. 2.CEMeC—Center of Excellence in Computational Mechanics, Politecnico di Bari, Department of Experimental MedicineUniversity Magna Graecia at CatanzaroItaly
  3. 3.Department of Experimental MedicineUniversity Magna Graecia at CatanzaroItaly
  4. 4.Nondestructive Evaluation ProgramThe Ohio State UniversityColumbus
  5. 5.Nondestructive Evaluation ProgramThe Ohio State UniversityColumbus
  6. 6.Nondestructive Evaluation ProgramThe Ohio State UniversityColumbus
  7. 7.Department of Biomedical EngineeringUniversity of Texas Health Science CenterHouston
  8. 8.University of Texas M.D. Anderson Cancer CenterHouston
  9. 9.Rice UniversityHouston
  10. 10.University of Texas Medical BranchGalveston
  11. 11.TheTexas Alliance for NanoHealthHouston

Personalised recommendations