Dip-Pen Technologies for Biomolecular Devices

  • Debjyoti Banerjee


Since the 1950s, Scanning Electron Microscopy (SEM) has been commercially available and used to measure feature sizes below1 micron. Modified SEMs have been employed since the 1960s to perform sub-micron lithography, which then made rapid advances in the 1990s to a process, known as electron beam lithography (EBL). Since the 1980s, Surface Tunneling Microscopy (STM) and Atomic Force Microscopy (AFM) have ushered the era of nanotechnology where it is possible to measure and control the manipulation of matter on the 100nm scale and below. These techniques are broadly classified as “Scanning Probe Microscopy (SPM)”. The earliest forms of nanofabrication using STM based approaches were used to pattern “hard” materials (such as silicon-dioxide; as opposed to “soft” materials such as polymers or biological materials) and restricted to single layer processing. These methods were initially motivated by applications in the semi-conductor industry.


American Chemical Society Electron Beam Lithography Gold Substrate Atomic Force Microscopy Topography Image Lateral Force Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Agarwal, L.A. Sowards, R.R. Naik, and M.O. Stone. Dip-pen nanolithography in tapping mode. J. Am. Chem. Soc., 125:580–583, 2003a.CrossRefGoogle Scholar
  2. [2]
    G. Agarwal, R.R. Naik, and M.O. Stone. Immobilization of histidine-tagged proteins on nickel by electrochemical dip pen nanolithography. J. Am. Chem. Soc., 125:7408–7412, 2003b.CrossRefGoogle Scholar
  3. [3]
    N.A. Amro, S. Xu, and G.Y. Liu. Patterning surfaces using tip-directed displacement and self-assembly. Langmuir, 16:3006–3009, 2000.CrossRefGoogle Scholar
  4. [4]
    G. Agarwal, L.A. Sowards, R.R. Naik, and M.O. Stone. Dip-pen nanolithography in tapping mode. J. Am. Chem. Soc., 125:580–583, 2003.CrossRefGoogle Scholar
  5. [5]
    D. Banerjee, N. Amro, and J. Fragala. Optimizing Microfluidic Ink Delivery Apparatus for Dip Pen Nanolithography. Proceedings of the SPIE Vol. 5345, PhotonicWest 2004 Symposium on Microfluidics, BioMEMS and Medical Microsystems II, Paper No. 5345-28, Jan 24–29, San Jose, CA, 2004.Google Scholar
  6. [6]
    P. Belaubre, M. Guirardel, G. Garcia, J.B. Pourciel, V. Leberre, A. Dagkessamanskaia, E. Trévisiol, J.M. FranÇois, and C. Berguad. Fabrication of biological microarrays using microcantilevers. Appl. Phys. Lett., 82(18):3122–3124, 2003.CrossRefGoogle Scholar
  7. [7]
    A. Bruckbauer, D.J. Zhou, and L.M. Ying et al. Multicomponent submicron features of biomolecules created by voltage controlled deposition from a nanopipet. J. Am. Chem. Soc., 125(32):9834–9839, 2003.CrossRefGoogle Scholar
  8. [8]
    C.L. Cheung, J.A. Camarero, B. Woods, T. Lin, J.E. Johnson, and J.J. DeYoreo. Fabrication of assembled virus nanostructures on templates of chemoselective linkers by scanning probe nanolithography. J. Am. Chem. Soc., 125:6848–6849, 2003.CrossRefGoogle Scholar
  9. [9]
    L.M. Demers and G. della Cioppa. Nanotechnology to advance discovery r&d—tutorial: Dip pen nanolithography as a next-generation, massively parallel nanoarray platform. Genet. Eng. News, 23(15), 2003.Google Scholar
  10. [10]
    L.M. Demers, D.S. Ginger, S.J. Park, Z. Li, S.W. Chung, and C.A. Mirkin. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science, 296:1836–1838, 2002.CrossRefGoogle Scholar
  11. [11]
    L.M. Demers, S.J. Park, T.A. Taton, Z. Li, and C.A. Mirkin. Orthogonal assembly of nanoparticle building blocks on dip-pen nanolithographically generated templates of DNA. Angew. Chem. Int. Ed., 40(16):3071–3073, 2001.CrossRefGoogle Scholar
  12. [12]
    L.M. Demers and C.A. Mirkin. Combinatorial templates generated by dip-pen nanolithography for the formation of two-dimensional particle arrays. Angew. Chem. Int. Ed., 40(16):3069–3071, 2001.CrossRefGoogle Scholar
  13. [13]
    D.S. Ginger, H. Zhang, and C.A. Mirkin. The evolution of dip-pen nanolithography. Angew. Chem. Int. Ed., 43(1):30–45, 2004.CrossRefGoogle Scholar
  14. [14]
    P.T. Hurley, A.E. Ribbe, and J.M. Buriak. Nanopatterning of alkynes on hydrogen-terminated silicon surfaces by scanning probe-induced cathodic electrografting. J. Am. Chem. Soc., 125(37):11334–11339, 2003.CrossRefGoogle Scholar
  15. [15]
    J. Hyun, S.J. Ahn, W.K. Lee, A. Chilkoti, and S. Zauscher. Molecular recognition-mediated fabrication of protein nanostructures by dip-pen lithography. Nano Letters, 2(11):1203–1207, 2002. [16] A. Ivanisevic, J.M. Im, K.B. Lee, S.J. Park, L.M. Demers, K.J. Watson, and C.A. Mirkin. Redox-controlled orthogonal assembly of charged nanostructures. J. Am. Chem. Soc., 123:12424–12425, 2001.CrossRefGoogle Scholar
  16. [17]
    J.Y. Jang, G.C. Schatz, and M.A. Ratner. Liquid meniscus condensation in dip-pen nanolithography. J. Chem. Phys., 116(9):3875–3886, 2002.CrossRefGoogle Scholar
  17. [18]
    H. Jung, R. Kulkarni, and C.P. Collier. Dip-pen nanolithography of reactive alkoxysilanes on glass. J. Am. Chem. Soc., 125(40):12096–12097, 2003.CrossRefGoogle Scholar
  18. [19]
    K.-H. Kim, N.M. Ke, and H.D. Espinosa. “Massively Parallel Multi-tip Nanoscle Writer with Fluidic Capabilities—Fountain Pen Nanolithography (FPN)”, Proceedings of the 4th International Symposium on MEMSand Nanotechnology, the 2003SEMAnnual Conference and Exposition on Experimental and Applied Mechanics, June 2–4, Charlotte, North Carolina, Session 52, Paper 191, pp. 235–238, 2003.Google Scholar
  19. [20]
    K.B. Lee, S.J. Park, C.A. Mirkin, J.C. Smith, and M. Mrksich. Protein nanoarrays generated by dip-pen nanolithography. Science, 295:1702–1705, 2002.CrossRefGoogle Scholar
  20. [21]
    K.B. Lee, J.H. Lim, and C.A. Mirkin. Protein nanostructures formed via direct-write dip-pen nanolithography. J. Am. Chem. Soc., 125(19):5588–5589, 2003.CrossRefGoogle Scholar
  21. [22]
    A. Lewis, Y. Kheifetz, E. Shambrodt, A. Radko, E. Khatchatryan, and C. Sukenik. Fountain Pen nanochemistry: Atomic force control of chrome etching. App. Phys. Lett., 75(17):2689–2691, 1999.CrossRefGoogle Scholar
  22. [23]
    Y. Li, B.W. Maynor, and J. Liu. Electrochemical AFM “dip-pen” nanolithography. J. Am. Chem. Soc., 123:2105–2106, 2001.CrossRefGoogle Scholar
  23. [24]
    J.H. Lim, D.S. Ginger, K.B. Lee, J.M. Nam, and C.A. Mirkin. Direct-write dip-pen nanolithography of proteins on modified silicon oxide surfaces. Angew. Chem. Int. Ed., 42:2309–2312, 2003.CrossRefGoogle Scholar
  24. [25]
    X. Liu, L. Fu, S. Hong, V.P. Dravid, and C.A. Mirkin. Arrays of magnetic nanoparticles patterned via “dip-pen” nanolithography. Ad. Mat., 14(3):231–234, 2002.CrossRefGoogle Scholar
  25. [26]
    J.H. Lim and C.A. Mirkin. Electrostatically driven dip-pen nanolithography of conducting polymers. Ad. Mat., 14(20):1474–1477, 2002.CrossRefGoogle Scholar
  26. [27]
    P. Manandhar, J. Jang, G.C. Schatz, M.A. Ratner, and S. Hong. Anomalous surface diffusion in nanoscale direct deposition processes. Phys. Rev. Lett., 90(11):115505-1–115505-4, 2003.CrossRefGoogle Scholar
  27. [28]
    S. Matsubara, H. Yamamoto, K. Oshima, E. Mouri, and H. Matsuoka. Fabrication of nano-structure by Diels-Alder reaction. Chem. Lett., 9:886–887, 2002.CrossRefGoogle Scholar
  28. [29]
    R. McKendry, W.T.S. Huck, B. Weeks, M. Florini, C. Abell, and T. Rayment. Creating nanoscale patterns of dendrimers on silicon surfaces with dip-pen nanolithography. Nano Lett., 2(7):713–716, 2002.CrossRefGoogle Scholar
  29. [30]
    C.A. Mirkin. Programming the assembly of two-and three-dimensional architectures with DNA and nanoscale inorganic building blocks. Inorg. Chem., 39(11):2258–2272, 2000.CrossRefGoogle Scholar
  30. [31]
    A. Noy, A.E. Miller, J.E. Klare, B.L. Weeks, B.W. Woods, and J.J. DeYoreo. Fabrication of luminescent nanostructures and polymer nanowires using dip-pen nanolithography. Nano Lett., 2(2):109–112, 2002.CrossRefGoogle Scholar
  31. [32]
    R.D. Piner and C.A. Mirkin. Effect ofWater on Lateral Force Microscopy in Air. Langmuir, 13:6864–6868, 1997.CrossRefGoogle Scholar
  32. [33]
    R.D. Piner, J. Zhu, F. Xu, S. Hong, and C.A. Mirkin. “Dip-pen” nanolithography. Science, 283:661–663, 1999.CrossRefGoogle Scholar
  33. [34]
    L.A. Porter, A.E. Ribbe, and J.M. Buriak. Metallic nanostructures via static plowing lithography. Nano Lett., 3(8):1043–1047, 2003.CrossRefGoogle Scholar
  34. [35]
    L.A. Porter, H.C. Choi, J.M. Schmeltzer, A.E. Ribbe, L.C.C. Elliott, J.M. Buriak. Electroless nanoparticle film deposition compatible with photolithography, microcontact printing, and dip-pen nanolithography patterning technologies. Nano Lett., 2(12):1369–1372, 2002.CrossRefGoogle Scholar
  35. [36]
    B. Rosner, T. Duenas, D. Banerjee, R. Shile, N. Amro, and J. Rendlen. Active Probes and Microfluidic Ink Delivery for Dip Pen Nanolithography, Proceedings of SPIE Symposium on Microelectronics, MEMS and Nanotechnology, Paper # Perth, Australia, 5275-33,10–12 December, 2003.Google Scholar
  36. [37]
    S. Shalom, K. Lieberman, and A. Lewis. A micropipette force probe suitable for near-field scanning optical microscopy. Rev. Sci. Inst., 63(9):4061–4065, 1992.CrossRefGoogle Scholar
  37. [38]
    M. Schenk, M. Futing, and R. Reichelt. Direct visualization of the dynamic behavior of a water meniscus by scanning electron microscopy. J. App. Phy., 84(9):4880–4884, 1998.CrossRefGoogle Scholar
  38. [39]
    P.V. Schwartz. Molecular transport from an atomic force microscope tip: A comparative study of dip-pen nanolithography. Langmuir, 18:4041–4046, 2002.CrossRefGoogle Scholar
  39. [40]
    J.C. Smith, K.B. Lee, Q.Wang, M.G. Finn, J.E. Johnson, M. Mrksich, and C.A. Mirkin. Nanopatterning the chemospecific immobilization of cowpea mosaic virus capsid. Nano Lett., 3(7):883–886, 2003.CrossRefGoogle Scholar
  40. [41]
    X.F. Wang, K.S. Ryu, D.A. Bullen, J. Zou, H. Zhang, C.A. Mirkin, and C. Liu. Scanning probe contact printing. Langmuir, 19(21):8951–8955, 2003.CrossRefGoogle Scholar
  41. [42]
    B.L. Weeks, A. Noy, A.E. Miller, and J.J. De Yoreo. Effect of dissolution kinetics on feature size in dip-pen nanolithography. Phys. Rev. Lett., 88(25):255505-1–255505-4, 2002.CrossRefGoogle Scholar
  42. [43]
    D.A. Weinberger, S. Hong, C.A. Mirkin, B.W. Wessels, and T.B. Higgins. Combinatorial generation and analysis of nanometer-and micrometer-scale silicon features via “dip-pen” nanolithography and wet chemical etching. Adv. Mat., 12(21):1600–1603, 2000.CrossRefGoogle Scholar
  43. [44]
    D.L. Wilson, R. Martin, S. Hong, M. Cronin-Golomb, C.A. Mirkin, and D.L. Kaplan. Surface organization and nanopatterning of collagen by dip-pen nanolithography. Proc. Nat. Acad. Sci. U.S.A., 98(24):13660–13664, 2001.CrossRefGoogle Scholar
  44. [45]
    M. Zhang, D. Bullen, S.W. Chung, S. Hong, K.S. Ryu, Z.F. Fan, C.A. Mirkin, and C. Liu. A MEMS nanoplotter with high-density parallel dip-pen nanolithography probe arrays. Nanotechnology, 13:212–217, 2002.CrossRefGoogle Scholar
  45. [46]
    H. Zhang, Z. Li, and C.A. Mirkin. Dip-pen nanolithography-based methodology for preparing arrays of nanostructures functionalized with oligonucleotides. Adv. Mat., 14(20):1472–1474, 2002.CrossRefGoogle Scholar
  46. [47]
    H. Zhang, K.B. Lee, Z. Li, and C.A. Mirkin. Biofunctionalized nanoarrays of inorganic structures prepared by dip-pen nanolithography. Nanotechnology, 14(10):1113–1117, 2003.CrossRefGoogle Scholar
  47. [48]
    D. Zhou, A. Bruckbauer, and L.M. Ying. Building three-dimensional surface biological assemblies on the nanometer scale. Nano Lett., 3(11):1517–1520, 2003.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Debjyoti Banerjee
    • 1
  1. 1.Applied Biosystems Inc.USA

Personalised recommendations