Advertisement

Biomolecular Sensing for Cancer Diagnostics Using Carbon Nanotubes

  • Jun Li
  • M. Meyyappan

Abstract

The field of biomolecule sensing in the medical field is broad and rapidly evolving. The devices range in size from microns to centimeters across the sensing surface and rely on electronic, optical or other form of signals. If the sensing technology utilizes toxic reagents, then the use is limited to only in vitro application. In this chapter, biomolecule sensing using carbon nanotubes (CNTs) is discussed with specific application to cancer diagnostics.

Keywords

Saturated Calomel Electrode Chemical Mechanical Polishing Cancer Diagnostics Guanine Base Thermal Chemical Vapor Deposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Carbon Nanotube: Science and Applications, M. Meyyappan (Ed.), CRC Press, Boca Raton, FL, 2004.Google Scholar
  2. [2]
    A.P. Moravsky, E.M. Wexler, and R.O. Loutfy, Chapter 3 in ref. 1.Google Scholar
  3. [3]
    M. Meyyappan. Chapter 4 in ref. 1.Google Scholar
  4. [4]
    A.J. Bard and L.R. Faulkner. Electrochemical Methods: Fundamental and Applications, 2nd Ed.Wiley, New York, 216–218, 2001.Google Scholar
  5. [5]
    R.M. Wightman. Anal. Chem., 53: 1125A, 1981.Google Scholar
  6. [6]
    F.-R.F. Fan and A.J. Bard. Science, 267: 817, 1995.CrossRefGoogle Scholar
  7. [7]
    L. McCreery. In Electroanalytical Chemistry, A.J. Bard (Ed.), Marcel Dekker, Inc., New York, 17: 221–374, 1991.Google Scholar
  8. [8]
    J. Li, H.T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Kohene, J. Han, and M. Meyyappan. Nano Lett., 3: 597, 2003.CrossRefGoogle Scholar
  9. [9]
    V. P. Menon and C.R. Martin. Anal. Chem., 67: 1920, 1995.CrossRefGoogle Scholar
  10. [10]
    J. Li, R. Stevens, L. Delzeit, H.T. Ng, A. Cassell, J. Han, and M. Meyyappan. Appl. Phys. Lett., 81(5): 910, 2002.CrossRefGoogle Scholar
  11. [11]
    J. Li, Q.L. Ye, A.M. Cassell, H.T. Ng, R. Stevens, J. Han, and M. Meyyappan. Appl. Phys. Lett., 82(15): 2491, 2003.CrossRefGoogle Scholar
  12. [12]
    A.M. Cassell, Q. Ye, B.A. Cruden, J. Li, P.C. Sarrazin, H.T. Ng, J. Han, and M. Meyyappan. Nanotechnology, 15: 9, 2004.CrossRefGoogle Scholar
  13. [13]
    J.V. Staros. Biochemistry, 21: 3950, 1982.CrossRefGoogle Scholar
  14. [14]
    Y. Miki, J. Swensen, D. Shattuck-Eidens, P.A. Futreal, K. Harshman, S. Tavtigian, Q. Liu, C. Cochran, L.M. Bennett and W. Ding. Science, 266: 66, 1994.CrossRefGoogle Scholar
  15. [15]
    M.F. Sistare, R.C. Holmberg, and H.H. Thorp. J. Phys. Chem. B, 103: 10718, 1999.CrossRefGoogle Scholar
  16. [16]
    N.D. Popovich and H.H. Thorp. Interface, 11(4): 30, 2002.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Jun Li
    • 1
  • M. Meyyappan
    • 1
  1. 1.Center for NanotechnologyNASA Ames Research CenterMoffett Field

Personalised recommendations