Skip to main content

Transient Grating Experiments in Glass-Former Liquids

  • Chapter
Time-Resolved Spectroscopy in Complex Liquids

The transient grating experiment is a very useful spectroscopic tool to investigate glass-former and viscous liquid dynamics. The technical improvements, introduced in the recent years, transformed it in a unique spectroscopic technique, thanks to the wide time window covered and the quality of experimental data. Furthermore, only recently a precise definition of the measured response function has been obtained permitting a more exact description of several dynamical processes present in complex liquids. In this chapter we review the transient grating spectroscopy from both experimental and theoretical points of view, paying particular attention to the interpretation of the measured data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eichler H.J., Gunter P., Pohl D.W. (1986). Laser-induced dynamic grat- ings. Spriger-Verlag, Berlin.

    Google Scholar 

  2. Eichler H.J., Salje G., Stahl H. (1973). Thermal diffusion measurements using spatially periodic temperature distributions induced by laser light, J. Appl. Phys. 44: 5383-5388.

    Article  ADS  Google Scholar 

  3. Pohl D.W., Schwarz S.E., Irniger V. (1973). Forced Rayleigh scattering, Phys. Rev. Lett. 31: 32-35.

    Article  ADS  Google Scholar 

  4. Bloembergen N. (1977). Nonlinear optics. Benjamin, New York.

    Google Scholar 

  5. Hellwarth R.W. (1977). Third-order susceptibilities of liquids and solids, Part I of Vol.5 of Monographs: Progress in Quantum Electronics. Sanders J.H. and Stenholm S. (Eds.), Pergaman Press New York.

    Google Scholar 

  6. Shen Y.R. (1984). The principles of nonlinear optics. Wiley, New York.

    Google Scholar 

  7. Special issue on dynamic gratings and four-wave mixing, IEEE J. Quant. Electron. 22(8).

    Google Scholar 

  8. Yan Y.X., Cheng L.T., Nelson K.A. (1988). The temperature-dependent distribution of relaxation times in glycerol: Time-domain light scattering study of acoustic and mountain-mode behavior in the 20 MHz3 GHz frequency range, J. Chem. Phys. 88: 6477-6486.

    Article  ADS  Google Scholar 

  9. Duggal A.R., Nelson K.A. (1991). Picosecond-microsecond structural relaxation dynamics in polypropylene glycol: Impulsive stimulated lightscattering experiments, J. Chem. Phys. 94: 7677-7688.

    Article  ADS  Google Scholar 

  10. Silence S.M., Duggal A.R., Dhar L., Nelson K.A. (1992). Structural and orientational relaxation in supercooled liquid triphenylphosphite, J. Chem. Phys. 96: 5448-5459.

    Article  ADS  Google Scholar 

  11. Yan Y., Nelson K.A. (1987). Impulsive stimulated light scattering. I. Gen- eral theory, J. Chem. Phys. 57: 6240-6256; ibid. Impulsive stimulated light scattering. II. Comparison to frequency domain light-scattering spectroscopy: 6257-6265.

    Article  ADS  Google Scholar 

  12. Yang Y., Nelson K.A. (1995). TC of the mode coupling theory evaluated from impulsive stimulated light scattering on salol, Phys. Rev. Lett. 74: 4883-4886.

    Article  ADS  Google Scholar 

  13. Maznev A.A., Nelson K.A., Rogers J.A. (1998). Optical heterodyne de- tection of laser-induced grating. Opt. Lett. 23: 1319-1321.

    Article  ADS  Google Scholar 

  14. Goodno G.D., Dadusc G., Miller R.J.D. (1998). Ultrafast heterodyne- detected transient-grating spectroscopy using diffractive optics, J. Opt. Soc. Am. B 15: 1791-1794.

    Article  ADS  Google Scholar 

  15. Torre R., Taschin A., Sampoli M. (2001). Acoustic and relaxation processes in supercooled orthoterphenyl by optical-heterodyne transient grating experiment, Phys. Rev. E 64: 061504(1—10).

    Article  ADS  Google Scholar 

  16. Di Leonardo R., Taschin A., Sampoli M., Torre R., Ruocco G. (2003). Nonequilibrium thermodynamic description of the coupling between structural and entropic modes in supercooled liquids, Phys. Rev. E (Rap. Com.) 67: 015102-1-015102-4.

    ADS  Google Scholar 

  17. Di Leonardo R., Taschin A., Sampoli M., Torre R., Ruocco G. (2003). Structural and entropic modes in supercooled liquids: experimental and theoretical investigation, J. Phys. Condens. Matter 15: S1181-S1192.

    Article  ADS  Google Scholar 

  18. Sampoli M., Taschin A., Eramo E. (2004). Hydrodynamic study of 3- methylpentane by transient grating experiment, Philos. Mag. 84: 1481-1490.

    Article  ADS  Google Scholar 

  19. Miller R.J.D. (1989). Time resolved spectroscopy. Clark R.J.H. and Hester R.E. (Eds.), Wiley, New York.

    Google Scholar 

  20. Terazima M. (1996). Refractive index change by photothermal effect with a constant density detected as temperature grating in various fluids, J. Chem. Phys. 104: 4988-4998.

    Article  ADS  Google Scholar 

  21. Taschin A., Bartolini P., Ricci M., Torre R. (2004). Transient grating experiment on supercooled water, Philos. Mag. 84: 1471-1479.

    Article  ADS  Google Scholar 

  22. Taschin A., Bartolini P., Eramo R., Torre R. (2006). Supercooled water re- laxation dynamics probed with heterodyne transient grating experiments, Phys. Rev. E 74: 031502(1-10).

    Article  ADS  Google Scholar 

  23. Taschin A., Torre R., Ricci M., Sampoli M., Dreyfus C., Pick R. (2001). Translation-rotation coupling in transient grating experiments: Theoretical and experimental evidences, Europhys. Lett. 56: 407-413.

    Article  ADS  Google Scholar 

  24. Pick R.M., Dreyfus C., Azzimani A., Taschin A., Ricci M., Torre R., Franosch T. (2003). Frequency and time resolved light scattering on longitudinal phonons in molecular supercooled liquids, J. Phys. Condens. Matter 15: S825-S834.

    Article  ADS  Google Scholar 

  25. Azzimani A., Dreyfus C., Pick R.M., Taschin A., Bartolini P., Torre R. (2007). A transient grating study of m-toluidine from 330 K to 190 K, J. Phys. Condens. Matter 19: 205146-205152.

    Article  ADS  Google Scholar 

  26. Azzimani A., Dreyfus C., Pick R.M., Bartolini P., Taschin A., Torre R. (2007). Analysis of a heterodyne-detected transient-grating experiment on a molecular supercooled liquid. I. Basic formulation of the problem, Phys. Rev. E 76:011509(1-6).

    Google Scholar 

  27. Azzimani A., Dreyfus C., Pick R.M., Bartolini P., Taschin A., Torre R. (2007). Analysis of a heterodyne-detected transient-grating experiment on a molecular supercooled liquid. II. Application to m-toluidine, Phys. Rev. E 76:011510(1-10).

    Google Scholar 

  28. Glorieux C., Nelson K.A., Hinze G., Fayer M.D. (2002). Thermal, structural, and orientational relaxation of supercooled salol studied by polarization-dependent impulsive stimulated scattering, J. Chem. Phys. 116: 3384-3395.

    Article  ADS  Google Scholar 

  29. Hinze G., Francis R.S., Fayer M.D. (1999). Translational-rotational cou- pling in supercooled liquids: Heterodyne detected induced molecular alignment, J. Chem. Phys. 111: 2710-2719.

    Article  ADS  Google Scholar 

  30. Pick R.M., Dreyfus C., Azzimani A., Gupta R., Torre R., Taschin A., Franosch T. (2004). Heterodyne detected transient gratings in supercooled molecular liquids: A phenomenological theory, Euro. Phys. J. B 39: 169-197.

    Article  ADS  Google Scholar 

  31. Franosch T., Pick R.M. (2005). Transient grating experiments on super- cooled molecular liquids. II. Microscopic derivation of the phenomenological equations, Eur. Phys. J. B 47: 341-361.

    ADS  Google Scholar 

  32. Dreyfus C., Aouadi A., Pick R.M., Berger T., Patkowski A., Steffen W. (1998). Light scattering measurement of shear viscosity in a fragile glassforming liquid, metatoluidine, Europhys. Lett. 42: 55-60.

    Article  ADS  Google Scholar 

  33. Dreyfus C., Aouadi A., Pick R.M., Berger T., Patkowski A., Steffen W. (1999). Light scattering by transverse waves in supercooled liquids and application to metatoluidine, Eur. Phys. J. B 9: 401-419.

    Article  ADS  Google Scholar 

  34. Pick R.M., Franosch T., Latz A., Dreyfus C. (2002). Light scattering by longitudinal acoustic modes in molecular supercooled liquids. I. Phenomenological approach, Eur. Phys. J. B 31: 217-228.

    Article  ADS  Google Scholar 

  35. Franosch1 T., Latz A., Pick R.M. (2003). Light scattering by longitudinal acoustic modes in supercooled molecular liquids. II. Microscopic derivation of the phenomenological equations, Eur. Phys. J. B 31: 229-246.

    Article  ADS  Google Scholar 

  36. Yang Y., Nelson K.A. (1995). Impulsive stimulated light scattering from glass-forming liquids. I. Generalized hydrodynamics approach, J. Chem. Phys. 103: 7722-7731; ibid. Impulsive stimulated light scattering from glass-forming liquids. II. Salol relaxation dynamics, nonergodicity parameter, and testing of mode coupling theory, 103: 7732-7739.

    Article  ADS  Google Scholar 

  37. Berne B.B., Pecora R. (1976). Dynamic light scattering. Wiley, NewYork.

    Google Scholar 

  38. Boon J.P., Yip S. (1980). Molecular hydrodynamics. McGraw-Hill, New York.

    Google Scholar 

  39. Zwanzig R. (1965). Frequency-dependent transport coefficients in fluid mechanics, J. Chem. Phys. 43: 714-720.

    Article  MathSciNet  ADS  Google Scholar 

  40. Mountain R.D. (1966). Thermal relaxation and brillouin scattering in liq- uids, J. Res. Natl. Bur. Std., 70A: 207.

    Google Scholar 

  41. Wong J., Angell C.A. (1976). Glass structure by spectroscopy. Marcel Dekker, New York.

    Google Scholar 

  42. Debenedetti P.G. (1996). Metastable liquids. American Chemical Society, Washington.

    Google Scholar 

  43. Fourkas J.T., Kivelson D., Mohanty U., Nelson K.A. (1996). Supercooled liquids. Princeton University Press, New Jersey.

    Google Scholar 

  44. G ötze W. (1999). Recent tests of the mode-coupling theory for glassy dynamics, J. Phys. Condens. Matter 11: A1-45.

    Article  Google Scholar 

  45. Cummins H.Z. (1999). The liquid-glass transition: A mode-coupling per- spective, J. Phys. Condens. Matter, 11: A95-117.

    Article  ADS  Google Scholar 

  46. Angell A.C., Ngai K.L., McKenna G.B., McMillan P.F., Martin S.W. (2000). Relaxation in glassforming liquids and amorphous solids, J. Appl. Phys. 88: 3113-3157.

    Article  ADS  Google Scholar 

  47. Terazima M. (1999). Optical heterodyne detected transient grating for the separations of phase and amplitude gratings and of different chemical species, J. Phys. Chem. A 103: 7401-7407.

    Article  Google Scholar 

  48. Mukamel S. (1995). Principles of nonlinear optical spectroscopy. Oxford University Press, New York.

    Google Scholar 

  49. Winkler K., Lindner J., V öhringer P. (2002). Low frequency depolarized Raman-spectral density of liquid water from femtosecond optical Kerreffect measurements: Lineshape analysis of restricted translational modes, Phys. Chem. Chem. Phys. 4: 2144-2155.

    Article  Google Scholar 

  50. Torre R., Bartolini P., Righini R. (2004). Structural relaxation in super- cooled water by time-resolved spectroscopy, Nature 428: 296-299.

    Article  ADS  Google Scholar 

  51. Angell C.A. (1988). Perspective on the glass transition, J. Phys. Chem. Solids 49: 863-871.

    Article  ADS  Google Scholar 

  52. Comez L., Fioretto D., Scarponi F., Monaco G. (2003). Density fluctua- tions in the intermediate glass-former glycerol: A Brillouin light scattering study, J. Chem. Phys. 119: 6032-6043.

    Article  ADS  Google Scholar 

  53. Lindsey C.P., Patterson G.D. (1980). Detailed comparison of the Williams-Watts and Cole-Davidson functions, J. Chem. Phys. 73: 3348-3357.

    Article  ADS  Google Scholar 

  54. Lin Y.-H., Wang C.H. (1979). Rayleigh-Brillouin scattering and structural relaxation of a viscoelastic liquid, J. Chem. Phys. 70: 681-688.

    Article  ADS  Google Scholar 

  55. Allain C., Berard M., Lallemand P. (1980). Thermal diffusivity of glycerol at the liquid-glass transition, Molec. Phys. 41: 429-440.

    Article  ADS  Google Scholar 

  56. Rajeswari M., Raychaudhuri A.K. (1993). Specific-heat measurements during cooling through the glass-transition region, Phys. Rev. B 47: 3036-3046.

    Article  ADS  Google Scholar 

  57. Allain C., Lallemand P. (1979). Phenomenological models compatible with acoustical and thermal properties of viscous liquids, J. Phys 40: 679-692.

    Google Scholar 

  58. De Groot S.R., Mazur P. (1969). Non-equilibrium thermodynamics. North-Holland, Amsterdam.

    Google Scholar 

  59. Bello A., Laredo E., Grimau M. (1999). Distribution of relaxation times from dielectric spectroscopy using Monte Carlo simulated annealing: Application to a-PVDF, Phys. Rev. B 60: 12764-12774.

    Google Scholar 

  60. Alvarez F., Alegra A., Colmenero J. (1991). Relationship between the time-domain Kohlrausch-Williams-Watts and frequency-domain Havriliak-Negami relaxation functions, Phys. Rev. B 44: 7306-7312.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bartolini, P., Taschin, A., Eramo, R., Torre, R. (2008). Transient Grating Experiments in Glass-Former Liquids. In: Torre, R. (eds) Time-Resolved Spectroscopy in Complex Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-25558-3_3

Download citation

Publish with us

Policies and ethics