Skip to main content

Poisson Approximation

  • Chapter
Applied Probability

Part of the book series: Springer Texts in Statistics ((STS))

  • 1028 Accesses

Abstract

In the past few years, mathematicians have developed a powerful technique known as the Chen-Stein method [2, 5] for approximating the distribution of a sum of weakly dependent Bernoulli random variables. In contrast to many asymptotic methods, this approximation carries with it explicit error bounds. Let X α be a Bernoulli random variable with success probability p α, where α be a Bernoulli random variable with success probability set I. It is natural to speculate that the sum S = Σα∈IXα is approximately Poisson with mean λ = Σα∈Ipα. The Chen-Stein method estimates the error in this approximation using the total variation distance between two integer-valued random variables Y and {tZ}. This distance is defined by

$$ \left\| {\mathcal{L}\left( Y \right) - \mathcal{L}\left( Z \right)} \right\| = {\mathbf{ }}\mathop {\sup }\limits_{A \subset \mathcal{N}} {\mathbf{ }}|\Pr \left( {Y \in A} \right) - \Pr \left( {Z \in A} \right)|, $$

where \( \mathcal{L} \) denotes distribution, and \( \mathcal{N} \) denotes the integers. Taking A = {0} in this definition yields the useful inequality

$$ \left| {\Pr \left( {Y = 0} \right) - \Pr \left( {Z = 0} \right)} \right| \leqslant \left\| {\mathcal{L}\left( Y \right) - \mathcal{L}\left( Z \right)} \right\|. $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

14.9 References

  1. Arratia R, Goldstein L, Gordon L (1989) Two moments suffice for Poisson approximations: the Chen-Stein method. Ann Prob 17:9–25

    Article  MATH  MathSciNet  Google Scholar 

  2. Arratia R, Goldstein L, Gordon L (1990) Poisson approximation and the Chen-Stein method. Stat Sci 5:403–434.

    MATH  MathSciNet  Google Scholar 

  3. Arratia R, Gordon L, Waterman MS (1986) An extreme value theory for sequence matching. Ann Stat 14:971–993

    Article  MATH  MathSciNet  Google Scholar 

  4. Arratia R, Waterman MS (1985) Critical phenomena in sequence matching. Ann Prob 13:1236–1249

    Article  MATH  MathSciNet  Google Scholar 

  5. Barbour AD, Hoist L, Janson S (1992) Poisson Approximation. Oxford University Press, Oxford

    MATH  Google Scholar 

  6. D’Eustachio P, Ruddle FH (1983) Somatic cell genetics and gene families. Science 220:919–924

    Article  Google Scholar 

  7. Erdös P, Rényi A (1970) On a new law of large numbers. J Anal Math 22:103–111

    Article  Google Scholar 

  8. Flatto L, Konheim AG (1962) The random division of an interval and the random covering of a circle. SIAM Review 4:211–222

    Article  MATH  MathSciNet  Google Scholar 

  9. Glaz J (1992) Extreme order statistics for a sequence of dependent random variables. Stochastic Inequalities, Shaked M, Tong YL, editors, IMS Lecture Notes — Monograph Series, Vol 22, Hayward, CA, pp 100–115

    Google Scholar 

  10. Goradia TM (1991) Stochastic Models for Human Gene Mapping. Ph.D. Thesis, Division of Applied Sciences, Harvard University

    Google Scholar 

  11. Goradia TM, Lange K (1988) Applications of coding theory to the design of somatic cell hybrid panels. Math Biosciences 91:201–219

    Article  MATH  Google Scholar 

  12. Hille E (1959) Analytic Function Theory, Vol 1. Blaisdell, New York

    MATH  Google Scholar 

  13. Karlin S, Macken C (1991) Some statistical problems in the assessment of inhomogeneities of DNA sequence data. J Amer Stat Assoc 86:27–35

    Article  Google Scholar 

  14. Lange K, Boehnke M (1982) How many polymorphic genes will it take to span the human genome? Amer J Hum Genet 34:842–845

    Google Scholar 

  15. Lindvall T (1992) Lectures on the Coupling Method. Wiley, New York

    MATH  Google Scholar 

  16. Roos M (1993) Compound Poisson approximations for the numbers of extreme spacings. Adv Appl Prob 25:847–874

    Article  MATH  MathSciNet  Google Scholar 

  17. Rushton AR (1976) Quantitative analysis of human chromosome segregation in man-mouse somatic cell hybrids. Cytogenetics Cell Genet 17:243–253

    Google Scholar 

  18. Solomon H (1978) Geometric Probability. SIAM, Philadelphia

    MATH  Google Scholar 

  19. Waterman MS (1989) Sequence alignments. Mathematical Methods for DNA Sequences, edited by Waterman MS, CRC Press, Boca Raton, FL, pp 53–92

    Google Scholar 

  20. Waterman MS (1995) Introduction to Computational Biology: Maps, Sequences, and Genomes. Chapman and Hall, London

    MATH  Google Scholar 

  21. Weiss M, Green H (1967) Human-mouse hybrid cell lines containing partial complements of human chromosomes and functioning human genes. Proc Natl Acad Sci 58:1104–1111

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

(2003). Poisson Approximation. In: Applied Probability. Springer Texts in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22711-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22711-5_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00425-9

  • Online ISBN: 978-0-387-22711-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics