Visual Adaptations in Crustaceans: Chromatic, Developmental, and Temporal Aspects

  • N. Justin Marshall
  • Thomas W. Cronin
  • Tamara M. Frank


Crustaceans possess a huge variety of body plans and inhabit most regions of Earth, specializing in the aquatic realm. Their diversity of form and living space has resulted in equally diverse eye designs. This chapter reviews the latest state of knowledge in crustacean vision concentrating on three areas: spectral sensitivities, ontogenetic development of spectral sensitivity, and the temporal properties of photoreceptors from different environments. Visual ecology is a binding element of the chapter and within this framework the astonishing variety of stomatopod (mantis shrimp) spectral sensitivities and the environmental pressures molding them are examined in some detail. The quantity and spectral content of light changes dramatically with depth and water type and, as might be expected, many adaptations in crustacean photoreceptor design are related to this governing environmental factor. Spectral and temporal tuning may be more influenced by bioluminescence in the deep ocean, and the spectral quality of light at dawn and dusk is probably a critical feature in the visual worlds of many shallow-water crustaceans. Plasticity in photoreceptor tuning is a recently emerging theme both in crustaceans and other animals. The seasonal variation in crayfish spectral sensitivity and spectral sensitivity change in single stomatopod species from different depths provide two examples of this. Other oddities such as the need to see the heat from hydrothermal vents, color dances in water-fleas, and the possible influences of temperature on the spectral tuning of visual pigments are also discussed.


Spectral Sensitivity Color Vision Visual Pigment Retinular Cell Visual Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Autrum, H. (1950). Die Belichtungspotentiale and das Sehen der Insekten (Untersuchungen an Calliphora und Dixippus). Z. Vergleich. Physiol. 32:176–227.CrossRefGoogle Scholar
  2. Autrum, H. (1958). Electrophysiological analysis of the visual systems in insects. Exp. Cell. Res. 5:426–439.Google Scholar
  3. Ball, E.E. (1977). Fine structure of the compound eyes of the midwater amphipod Phronima in relation to behavior and habitat. Tissue Cell 9:521–536.PubMedCrossRefGoogle Scholar
  4. Barnes, H., and Klepal, W. (1972). Phototaxis in stage I nauplius larvae of two cirripedes. J. Exp. Mar. Ecol. 10:267–273.CrossRefGoogle Scholar
  5. Bayliss, L.E., Lythgoe, J.N., and Tansley, K. (1936). Some forms of visual purple in sea fishes with a note on the visual cells of origin. Proc. R. Soc. Lond. B. 120:95–114.Google Scholar
  6. Benguerrah, A., and Carricaburu, P. (1976). L’ electroretinogramme chez les Crustacea isopodes. Vision Res. 16:1173–1177.PubMedCrossRefGoogle Scholar
  7. Boden, B.P, Kampa, E.M., and Abott, B.C. (1961). Photoreception of a planktonic crustacean in relation to light penetration in the sea. In: Progress in Photobiology (Christensen, B., and Buchamann, B., eds.), pp. 189–196. New York: Elsevier North-Holland.Google Scholar
  8. Bridges, C.D.B. (1972). The rhodopsin-porphyropsin visual system, In: Handbook of Sensory Physiology, Vol. VII/1: Photochemistry of Vision (Dartnall, H.J.A., ed.), Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
  9. Briggs, M.H. (1961). Visual pigment of grapsoid crabs. Nature 190:784–786.CrossRefGoogle Scholar
  10. Bröcker, H. (1935). Untersuchungen über das Sehvermögen der Einsiedlerkrebse. Zool. Jahrb. Abt. Allgem. Zool. Physiol. Tiere 55:399–430.Google Scholar
  11. Bruno, M.S., Mote, M.I., and Goldsmith, T.M. (1974). Spectral absorption and sensitivity measurements in single ommatidia of the green crab, Carcinus. J. Comp. Physiol. 82:151–163.CrossRefGoogle Scholar
  12. Bruno, M.S., Barnes, S.N., and Goldsmith, T.H. (1977). The visual pigment and visual cycle of the lobster, Homarus. J. Comp. Physiol. 120:123–142.CrossRefGoogle Scholar
  13. Caldwell, R.L., and Dingle, H. (1975). Ecology and evolution of agonistic behavior in stomatopods. Naturwissenschaften 62:214–222.CrossRefGoogle Scholar
  14. Carleton, K.L., Harosi, F.I., and Kocher, T.D. (2000). Visual pigments of African cichlid fishes: Evidence for ultraviolet vision from microspectrophotometry and DNA sequences. Vision Res. 40:879–890.PubMedCrossRefGoogle Scholar
  15. Chiao, C.C., Cronin, T.W., and Marshall, J. (2000). Eye design and color signaling in a stomatopod crustacean, Gonodactylus smithii. Brain Behav. Evol. 56:107–122.PubMedCrossRefGoogle Scholar
  16. Clarke, G.L. (1936). On the depth at which fishes can see. Ecology 17:452–456.CrossRefGoogle Scholar
  17. Crandall, K.A., and Cronin, T.W. (1995). Opsin evolution in crayfishes: Effects of functional constraints. In: Current Topics on Molecular Evolution (Nei, M., and Takahata, N., eds.), pp. 19–27. Institute of Molecular Evolutionary Genetics, Pennsylvania State University.Google Scholar
  18. Crescitelli, F., McFall-Ngai, M., and Horwitz, J. (1985). The visual pigment sensitivity hypothesis: Further evidence from fishes of varying habitats. J. Comp. Physiol. 157:323–333.CrossRefGoogle Scholar
  19. Cronin, T.W. (1985). The visual pigment of a stomatopod crustacean, Squilla empusa. J. Comp. Physiol. 156:679–687.CrossRefGoogle Scholar
  20. Cronin, T.W. (1986). Optical design and evolutionary adaptation in crustacean compound eyes. J. Crust. Biol. 6:1–23.CrossRefGoogle Scholar
  21. Cronin, T.W. (1994). Polychromatic vision in mantis shrimps. Sensorie Systemy 8:95–106.Google Scholar
  22. Cronin, T.W., and Caldwell, R.L. (2002). Tuning of photoreceptor function in mantis shrimp species occupying a range of depths. II. Filter pigments. J. Comp. Physiol. A. 188:187–197.CrossRefGoogle Scholar
  23. Cronin, T.W., and Forward, R.B. Jr. (1988). The visual pigments of crabs. I. Spectral characteristics. J. Comp. Physiol. A. 162:463–478.CrossRefGoogle Scholar
  24. Cronin, T.W., and Frank, T.F. (1996). A shortwavelength photoreceptor class in a deep-sea shrimp. Proc. Roy. Soc. Lond. B. 263:861–865.CrossRefGoogle Scholar
  25. Cronin, T.W., and Goldsmith, T.H. (1982). Quantum efficiency and photosensitivity of the rhodopsinmetarhodopsin conversion in crayfish photoreceptors. Photochem. Photobiol. 36:447–454.PubMedCrossRefGoogle Scholar
  26. Cronin, T.W., and Hariyama, Y. (2002). Spectral sensitivity in crustaceans. In: The Crustacean Nervous System (Wiese, K., ed.), pp. 499–511. Berlin, Heidelberg, New York: Springer.Google Scholar
  27. Cronin, T.W., and Jinks, R.N. (2002). Ontogeny of vision in marine crustaceans. Am. Zoologist 41: 1098–1107.CrossRefGoogle Scholar
  28. Cronin, T.W., and Marshall, N.J. (1989a). Multiple spectral classes of photoreceptors in the retinas of gonodactyloid stomatopod crustaceans. J. Comp. Physiol. A. 166:267–275.CrossRefGoogle Scholar
  29. Cronin, T.W., and Marshall, N.J. (1989b). A retina with at least ten spectral types of photoreceptors in a stomatopod crustacean. Nature 339:137–140.CrossRefGoogle Scholar
  30. Cronin, T.W., and Marshall, J. (2001). Parallel processing and image analysis in the eyes of mantis shrimps. Biol. Bull. 200:177–183.PubMedCrossRefGoogle Scholar
  31. Cronin, T.W., and Marshall, J. (in press). The visual world of mantis shrimps. In: Complex Worlds from Simpler Nervous Systems (Prete, F.R., ed.), Boston: MIT Press.Google Scholar
  32. Cronin, T.W., Caldwell, R.L., and Erdmann, M.V. (2002). Tuning of photoreceptor function in mantis shrimp species occupying a range of depths. I. Visual pigments. J. Comp. Physiol. A. 188:179–186.CrossRefGoogle Scholar
  33. Cronin, T.W., Caldwell, R.L., and Marshall, J. (2001). Tunable colour vision in a mantis shrimp. Nature 411:547–548PubMedCrossRefGoogle Scholar
  34. Cronin, T.W., Marshall, N.J., and Caldwell, R.L. (1993). Photoreceptor spectral diversity in the retinas of squilloid and lysiosquilloid stom-atopod crustaceans. J. Comp. Physiol. A. 172:339–350.CrossRefGoogle Scholar
  35. Cronin, T.W., Marshall, N.J., and Caldwell, R.L. (1994a). The intrarhabdomal filters in the retinas of mantis shrimps. Vision Res. 34:279–291.PubMedCrossRefGoogle Scholar
  36. Cronin, T.W., Marshall, N.J., and Caldwell, R.L. (1994b). The retinas of mantis shrimps from lowlight environments (Crustacea; Stomatopoda; Gonodactylidae). J. Comp. Physiol. A. 174:607–619.CrossRefGoogle Scholar
  37. Cronin, T.W., Marshall, N.J., and Caldwell, R.L. (1996). Visual pigment diversity in two genera of mantis shrimps implies rapid evolution. J. Comp. Physiol. A. 179:371–384.CrossRefGoogle Scholar
  38. Cronin, T.W., Marshall, N.J., Caldwell, R.L., and Pales, D. (1995). Compound eyes and ocular pigments of crustacean larvae (Stomatopoda and Decapoda, Brachyura). Mar. Freshwater Behav. Physiol. 26:219–231.Google Scholar
  39. Cronin, T.W., Marshall, N.J., Caldwell, R.L., and Shashar N. (1994c). Specialization of retinal function in the compound eyes of mantis shrimps. Vision Res. 34:2639–2656.PubMedCrossRefGoogle Scholar
  40. Cronin, T.W., Marshall, N.J., Quinn, C.A., and King, C.A. (1994d). Ultraviolet photoreception in mantis shrimp. Vision Res. 34:1443–1452.PubMedCrossRefGoogle Scholar
  41. Cronly-Dillon, J., and Sharma, S.C. (1968). Effect of season and sex on the photopic spectral sensitivity of the threespined stickleback. J. Exp. Biol. 49:679–687.PubMedGoogle Scholar
  42. Crozier, W.J., and Wolf, E. (1939). The flicker response contour for the crayfish. J. Gen. Physiol. 23:1–10.CrossRefGoogle Scholar
  43. Crozier, W.J, Wolf, E., and Zerrahn-Wolf, G. (1939). The flicker response contour for the isopod Asellus. J. Gen. Physiol. 22:451–462.CrossRefGoogle Scholar
  44. Cummins, D., and Goldsmith, T.H. (1981). Cellular identification of the violet receptor in the crayfish eye. J. Comp. Physiol. 142:199–202.CrossRefGoogle Scholar
  45. Cummins, D., Chen, D.-M.-Y., and Goldsmith, T.H. (1984). Spectral sensitivity of the spiny lobster, Panulirus argus. Biol. Bull. 166:269–276.CrossRefGoogle Scholar
  46. de Souza, J.M., and Ventura, D.F. (1989). Comparative study of temporal summation and response form in hymenopteran photoreceptors. J. Comp. Physiol. A. 165:237–245.PubMedCrossRefGoogle Scholar
  47. Denton, E.J. (1990). Light and vision at depths greater than 200 metres. In: Light and Life in the Sea (Herring, P.J., Campell, A.K., Whitfield, M., and Maddock, L., eds.), pp. 127–148. Cambridge: Cambridge University Press.Google Scholar
  48. Denys, C.J. (1982). Ommachrome pigments in the eyes of Euphausia superba (Crustacea, Euphausiacea). Polar Biol. 1:1–10.CrossRefGoogle Scholar
  49. Denys, C.J., and Brown, P.K. (1982). The rhodopsins of Euphausia superba and Meganyctiphanes norvegica (Crustacea, Euphausiacea). J. Gen. Physiol. 80:451–472.PubMedCrossRefGoogle Scholar
  50. Douglas, R.H., and Marshall, N.J. (1999). A review of vertebrate and invertebrate ocular filters. In: Adaptive Mechanisms in the Ecology of Vision (Archer, S., Djamgoz, M.B.A., Loew, E., Partridge, J.C., and Vallerga, S., eds.), pp. 95–162. Dordrecht: Kluwer Academic.Google Scholar
  51. Eaton, B.P., and Brown, C.M. (1970). Photoreception in the nauplius eye of Pandalus borealis Kröger: Decapoda, Crustacea. Canad. J. Zool. 48:119–121.Google Scholar
  52. Edwards, A.S. (1969). The structure of the eye of Ligea oceanica L. Tissue Cell 1:217–228.PubMedGoogle Scholar
  53. Eguchi, E. (1973). Orthogonal microvillus pattern in the eighth rhabdomere of the rock crab Grapsus. Z. Zellforsch. 137:145–157.PubMedCrossRefGoogle Scholar
  54. Eguchi, E., and Waterman, T.H. (1967). Changes in the retinal fine structure induced in the crab Libinia by light and dark adaptation. Z. Zellforsch. 79:209–229.PubMedCrossRefGoogle Scholar
  55. Fernandez, H.R. (1965). A survey of the visual pigments of decapod Crustacea of South Florida. PhD dissertation. Coral Gables, FL: University of Miami.Google Scholar
  56. Fernandez, H.R. (1973). Spectral sensitivity and visual pigment of the compound eye of the galatheid crab Pleuroncodes planipes. Mar. Biol. 20:148–153.CrossRefGoogle Scholar
  57. Fisher, L.R., and Goldie, E.H. (1959). The eye pigments of a euphausiid crustacean, Meganyctiphanes norvegica (M. Sars). Proc. XV Intern. Congr. Zool. Lond. pp. 533–535.Google Scholar
  58. Fisher, L.R., and Goldie, E.H. (1961). Pigments of compound eyes. In: Progress in Photobiology (Christensen, B.B., and Buchamann, B., eds.), pp. 153–154. New York: Elsevier North-Holland.Google Scholar
  59. Forward, R.B.J., Cronin, T.W., and Douglass, J.K. (1988). The visual pigments of crabs. II. Environmental adaptations. J. Comp. Physiol. A. 162: 479–490.CrossRefGoogle Scholar
  60. Frank, T.M. (1999). Comparative study of temporal resolution in the visual systems of mesopelagic crustaceans. Biol. Bull. 196:137–144.CrossRefGoogle Scholar
  61. Frank, T.M. (2000). Temporal resolution in mesopelagic crustaceans. Phil. Trans. Roy. Soc. Lond. B. 355:1195–1198.CrossRefGoogle Scholar
  62. Frank, T.M., and Case, J.F (1988a). Visual spectral sensitivities of bioluminescent deep-sea crustaceans. Biol. Bull. 175:261–273.CrossRefGoogle Scholar
  63. Frank, T.M., and Case, J.F. (1988b). Visual spectral sensitivity of the bioluminescent deep-sea mysid, Gnathophausia ingens. Biol. Bull. 175:1–10.Google Scholar
  64. Frank, T.M., and Widder, E.A. (1994a). Comparative study of behavioural-sensitivity thresholds to near-UV and blue-green light in deep-sea crustaceans. Mar. Biol. 121:229–235.CrossRefGoogle Scholar
  65. Frank, T.M., and Widder, E.A. (1994b). Evidence for behavioural sensitivity to near-UV light in the deep-sea crustacean Systellaspis debilis. Mar. Biol. 118:279–284.CrossRefGoogle Scholar
  66. Frank, T.M., and Widder, E.A. (1996). UV light in the deep-sea: In situ measurements of downwelling irradiance in relation to the visual threshold sensitivity of UV-sensitive crustaceans. Mar. Fresh. Behav. Physiol. 27:189–197.Google Scholar
  67. Frank, T.M., and Widder, E.A. (1999). Comparative study of the spectral sensitivities of mesopelagic crustaceans. J. Comp. Physiol. A. 185:255–265.CrossRefGoogle Scholar
  68. Goldsmith, T.H. (1978). The spectral absorption of crayfish rhabdoms: Pigment photoproduct and pH sensitivity. Vision Res. 18:463–473.PubMedCrossRefGoogle Scholar
  69. Goldsmith, T.H., and Cronin, T.W. (1993). The retinoids of seven species of mantis shrimp. Visual Neurosci. 10:915–920.Google Scholar
  70. Hallberg, E. (1977). The fine structure of the compound eyes of mysids (Crustacea: Mysidacea). Cell Tiss. Res. 184:45–65.CrossRefGoogle Scholar
  71. Hallberg, E., and Nilsson, D.E. (1983). The euphausid compound eye: A morphological reinvestigation (Crustacea: Euphausidacea). Zoomorphologie 103:59–66.CrossRefGoogle Scholar
  72. Hallberg, E., Nilsson, H.L., and Elofsson, R. (1980). Classification of amphipod compound eyes: The fine structure of the ommatidial units (Crustacea, Amphipoda). Zoomorphologie 94:279–306.CrossRefGoogle Scholar
  73. Hamacher, K.J., and Kohl, K.D. (1981). Spectroscopical studies of the Astacus visual pigment. Biophys. Struct. Mech. 7:338–343.CrossRefGoogle Scholar
  74. Hamacher, K.J., and Stieve, H. (1984). Spectral properties of the rhodopsin-system of the crayfish Astacus leptodactylus. Photochem. Photobiol. 39: 379–390.CrossRefGoogle Scholar
  75. Hariyama, T, Tsukahara, Y., and Meyer-Rochow, V.B. (1993). Spectral responses, including a UV-sensitive cell type, in the eye of the isopod Ligia exotica. Naturwissenschaffen 80:233–235.CrossRefGoogle Scholar
  76. Hays, D., and Goldsmith, T.H. (1969). Microspectrophotometry of the visual pigment of the spider crab Libinia emarginata. Z. Vergl. Physio. 65:218–232.CrossRefGoogle Scholar
  77. Hazlett, B.A. (1979). The meral spot of Gonodactylus oerstedii Hansen as a visual stimulus (Stomatopoda, Gonodactylidae). Crustaceana 36: 196–198.CrossRefGoogle Scholar
  78. Hertel, H. (1972). Aspekte zur photorezeption von Artemia salina. Verh. Dtsch. Ges. Zool. Erlangen. 14–78.Google Scholar
  79. Hiller-Adams, P., Widder, E.A., and Case, J.F. (1988). The visual pigments of four deep-sea crustacean species. J. Comp. Physiol. A. 163:63–72.PubMedCrossRefGoogle Scholar
  80. Hillman, P., Dodge, F.A., Hochstein, S., Knight, B.W., and Minke, B. (1973). Rapid dark recovery of the invertebrate early receptor potential. J. Gen. Physiol. 62:77–86.CrossRefPubMedGoogle Scholar
  81. Horridge, G.A. (1967). Perception of polarization plane, colour, and movement in two dimensions by the crab, Carcinus. Z. Vergl. Physiol. 55:207–224.CrossRefGoogle Scholar
  82. Horridge, G.A. (1978). The separation of visual axes in apposition compound eyes. Phil. Trans. Roy. Soc. Lond. B. 285:1–59.CrossRefGoogle Scholar
  83. Houde, A.E., and Endler, J.A. (1990). Correlated evolution of female mating preferences and male color patterns in the guppy Poecilia reticulata. Science 14:1405–1408.CrossRefGoogle Scholar
  84. Howard, J., Dubs, A., and Payne, R. (1984). The dynamics of phototransduction in insects. J. Comp. Physiol. 154:707–718.CrossRefGoogle Scholar
  85. Hyatt, G.W. (1975). Physiological and behavioural evidence for colour discrimination by fiddler crabs (Brachyura, Ocypodidae, genus Uca). In: Physiological Ecology of Estuarine Organisms (Vernberg, F.J., ed.), pp. 333–365. Columbia, SC: University of South Carolina Press.Google Scholar
  86. Jacobs, G.H., and Deegan, J.F.I. (2000). Photopigments and colour vision in New World monkeys from the family Atelidae. Proc. Roy. Soc. Lond. B. 268:695–702.CrossRefGoogle Scholar
  87. Jerlov, N.G. (1976). Marine Optics. Amsterdam: Elsevier.Google Scholar
  88. Johnson, M.L., Shelton P.M.J., and Gaten, E. (2000). Temporal resolution in the eyes of marine decapods from coastal and deep-sea habitats. Mar. Biol. 136:243–248.CrossRefGoogle Scholar
  89. Jutte, P.A., Cronin, T.W., and Caldwell, R.L. (1998). Retinal function in the planktonic larvae of two species of Pullosquilla, a lysiosquilloid stomatopod crustacean. J. Exp. Biol. 201:2481–2487.PubMedGoogle Scholar
  90. Kampa, E.M. (1955). Euphausiopsin: A new photosensitive pigment from the eyes of euphausiid crustaceans. Nature 175:996–998.CrossRefGoogle Scholar
  91. Kelber, A. (1996). Colour learning in the hawkmoth Macroglossum stellatarum. J. Exp. Biol. 199: 1127–1131.PubMedGoogle Scholar
  92. Knowles, A., and Dartnall, H.J.A. (1977). Habitat and visual pigments. In: The Eye, Vol. 2B: The Photobiology of Vision (Davson, H., ed.), pp. 581–641. New York: Academic Press.Google Scholar
  93. Lall, A.B., and Cronin, T.W. (1987). Spectral sensitivity of the compound eyes in the purple land crab Gecarcinus lateralis (Freminville). Biol. Bull. 173:398–406.CrossRefGoogle Scholar
  94. Land, M.F (1981a). Optics and vision in invertebrates. In: Handbook of Sensory Physiology, Vol. VII/6B (Autrum, H., ed.), pp. 471–592. Berlin: Springer-Verlag.Google Scholar
  95. Land, M.F. (1981b). Optics of the eyes of Phronima and other deep-sea amphipods. J. Comp. Physiol. 145:209–226.CrossRefGoogle Scholar
  96. Land, M.F. (1984). Crustacea. In: Photoreception and Vision in Invertebrates (Ali, M.A., ed.), pp. 401–438. New York: Plenum.Google Scholar
  97. Land, M.F. (1989). The sight of deep wet heat. Nature 337:404.CrossRefGoogle Scholar
  98. Land, M.F., and Nilsson, D.-E. (2002). Animal Eyes. Oxford, New York: Oxford University Press.Google Scholar
  99. Land, M.F., Burton, F.A., and Meyer-Rochow, V.B. (1979). The optical geometry of euphausiid eyes. J. Comp. Physiol. 130:49–62.CrossRefGoogle Scholar
  100. Laughlin, S.B., and Weckstrom, M. (1993). Fast and slow photoreceptors: A comparative study of the functional diversity of coding and conductances in the Diptera. J. Comp. Physiol. 172:593–609.CrossRefGoogle Scholar
  101. Latz, M.I., Frank, T.M., and Case, J.F. (1988). Spectral composition of bioluminescence of epipelagic organisms from the Sargasso Sea. Mar. Biol. 98:441–446.CrossRefGoogle Scholar
  102. Lindsay, S.M., Frank, T.M., Kent, I, Partridge, J.C., and Latz, M.I. (1999). Spectral sensitivity of vision and bioluminescence in the mid-water shrimp, Sergestes similis. Biol. Bull. 1:1–11.Google Scholar
  103. Loew, E.R., and Lythgoe, J.N. (1978). The ecology of cone pigments in teleost fishes. Vision Res. 18: 715–722.PubMedCrossRefGoogle Scholar
  104. Lythgoe, J.N. (1966). Visual pigments and underwater vision. In: Light as an Ecological Factor (Bainbridge, R., Evans, G.C., and Rackham, O., eds.), Oxford: Blackwell.Google Scholar
  105. Lythgoe, J.N. (1968). Visual pigments and visual range underwater. Vision Res. 8:997–1012.PubMedCrossRefGoogle Scholar
  106. Lythgoe, J.N. (1979). The Ecology of Vision. Oxford: Clarendon Press.Google Scholar
  107. Manning, R.B., Schiff, H., and Abbott, B.C. (1984). Eye structure and classification of stomatopod crustaceans. Zool. Scripta 13:41–44.CrossRefGoogle Scholar
  108. Marshall, N.J. (1988). A unique colour and polarization vision system in mantis shrimps. Nature 333:557–560.PubMedCrossRefGoogle Scholar
  109. Marshall, N.J., and Land, M.F (1993a). Some optical features of the eyes of stomatopods. I. Eye shape, optical axes and resolution. J. Comp. Physiol. A. 173:565–582.Google Scholar
  110. Marshall, N.J., and Land, M.F. (1993b). Some optical features of the eyes of stomatopods. II. Ommatidial design, sensitivity and habitat. J. Comp. Physiol. A. 173:583–594.CrossRefGoogle Scholar
  111. Marshall, N.J., and Oberwinkler, J. (1993). Electrophysiology of mantis shrimp retina. Abstracts of the British Photobiology Society.Google Scholar
  112. Marshall, J., and Oberwinkler, J. (1999). The colourful world of the mantis shrimp. Nature 401: 873–874.PubMedCrossRefGoogle Scholar
  113. Marshall, N.J., Cronin, T.W., and Shashar, N. (1999a). Behavioural evidence for polarisation vision in stomatopods reveals a potential channel for communication. Current Biology 9:755–758.PubMedCrossRefGoogle Scholar
  114. Marshall, N.J., Jones, J.P., and Cronin, T.W. (1996). Behavioural evidence for color vision in stomatopod crustaceans. J. Comp. Physiol. A. 179:473–481.CrossRefGoogle Scholar
  115. Marshall, N.J., Kent, K., and Cronin, T.W. (1999b). Pigments in eyes of marine crustaceans. In: Adaptive Mechanisms in the Ecology of Vision (Archer, S.N., Djamgoz, M.B.A., Loew, E.R., Partridge, J.C., and Vallerga, S., eds.), pp. 285–327. Dordrecht: Kluwer Academic.Google Scholar
  116. Marshall, N.I, Land, M.F, King, C.A., and Cronin, T.W. (1991a). The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). I. Compound eye structure: The detection of polarised light. Phil. Trans. R. Soc. Ser. B. 334:33–56.CrossRefGoogle Scholar
  117. Marshall, N.J., Land, M.F., King, C.A., and Cronin, T.W. (1991b). The compound eyes of mantis shrimps (Crustacea, Hoplocarida, Stomatopoda). II. Colour pigments in the eyes of Stomatopod crustaceans: Polychromatic vision by serial and lateral filtering. Phil. Trans. R. Soc. B. 334:57–84.CrossRefGoogle Scholar
  118. Martin, F.G., and Mote, M.I. (1982). Colour receptors in marine crustaceans: A second class of retinular cell in the compound eyes of Callinectes and Carcinus. J. Comp. Physiol. 145:549–554.CrossRefGoogle Scholar
  119. McFarland, W.N. (1991). The visual world of coral reef fishes. In: The Ecology of Fishes on Coral Reefs (Sale, PP., ed.), pp. 16–38. San Diego: Academic Press.Google Scholar
  120. McFarland, W.N., and Munz, F.W. (1975). Part II: The photopic environment of clear tropical seas during the day. Vision Res. 15:1063–1070.PubMedCrossRefGoogle Scholar
  121. Meyer-Rochow, V.B., and Tiang, K.M.(1984). The eye of Jasus edwardsii (Crustacea, Decapoda, Palinuridae): Electrophysiology, histology and behaviour. Zoologica 134:1–61.Google Scholar
  122. Minke, B., and Kirschfield, K. (1978). Microspectrophotometric evidence for two photointerconvertible states of visual pigment in the barnacle lateral eye. J. Gen. Physiol. 71:37–45.PubMedCrossRefGoogle Scholar
  123. Moeller, J.F., and Case, J.F. (1995). Temporal adaptations in visual systems of deep-sea crustaceans. Mar. Biol. 123:47–54.CrossRefGoogle Scholar
  124. Munz, F.W., and McFarland, W.N. (1973). The significance of spectral position in the rhodopsins of tropical marine fishes. Vision Res. 13:1829–1874.PubMedCrossRefGoogle Scholar
  125. Münz, F.W., and McFarland, W.N. (1977). Evolutionary adaptations of fishes to the photic environment. In: The Visual System in Vertebrates (Crescitelli, F., ed.), pp. 193–274. Berlin, Heidelberg, New York, Springer.Google Scholar
  126. Nathans, J. (1989). The genes for colour vision. Sci. Amer. 1989:28–35.Google Scholar
  127. Nilsson, D.E. (1983). Evolutionary links between apposition and superposition optics in crustacean eyes. Nature 302:818–821CrossRefGoogle Scholar
  128. Nilsson, D.E., Hallberg, E., and Elofsson, E. (1986). The ontogenetic development of refracting superposition eyes in crustaceans: transformation of optical design. Tissue Cell 18:509–519.CrossRefPubMedGoogle Scholar
  129. Nosaki, A. (1969). Electrophysiological study of color encoding in the compound eye of crayfish, Procambarus clarkii. Z. Vergl. Physiologie. 64: 318–323.CrossRefGoogle Scholar
  130. Osorio, D., Marshall, N.J., and Cronin, T.W. (1997). Stomatopod photoreceptor spectral tuning as an adaptation for colour constancy in water. Vision Res. 37:3299–3309.PubMedCrossRefGoogle Scholar
  131. Pelli, D.G., and Chamberlain, S.C. (1989). The visibility of 350°C black-body radiation by the shrimp Rimicaris exoculata and man. Nature 337:460–461.PubMedCrossRefGoogle Scholar
  132. Pirenne, M.H. (1967). Vision and the Eye. London: Chapman & Hall.Google Scholar
  133. Pirenne, M.H., and Denton, E.J. (1952). Accuracy and sensitivity of the human eye. Nature 170: 1039–1042.PubMedCrossRefGoogle Scholar
  134. Ruck, P., and Jahn, T.L. (1954). Electrical studies on the compound eye of Ligia occidentalis Dana (Crustacea: Isopoda). J. Gen. Physiol. 37:825–849.PubMedCrossRefGoogle Scholar
  135. Sakamoto, K., Hisatomi, O., Tokunaga, F., and Eguchi, E. (1996). Two opsins from the compound eye of the crab Hemigrapsus sanguinensis. J. Exp. Biol. 199:441–450.PubMedGoogle Scholar
  136. Scherer, C., and Kolb, G. (1987). The influence of colour stimuli on visually controlled behaviour in Aglais urticae L. and Parage aegeria L. (Lepidoptera). J. Comp. Physiol. A. 161:891–898.CrossRefGoogle Scholar
  137. Schiff, H. (1963). Dim light vision of Squilla mantis L. Am. J. Physiol. 205:927–940.PubMedGoogle Scholar
  138. Schiff, H., Manning, R.B., and Abbott, B.C. (1986). Structure and optics of ommatidia from eyes of stomatopod crustaceans from different luminous habitats. Biol. Bull. 170:461–480.CrossRefGoogle Scholar
  139. Scott, S., and Mote, M.I. (1973). Spectral sensitivity in some marine Crustacea. Vision Res. 14:659–663.CrossRefGoogle Scholar
  140. Shand, J., Hart, N.S., Thomas, N., and Partridge, J.C. (2001b). Developmental changes in the visual pigments of black bream. Invest. Ophthalmol. Visual Sci. 42:S362.Google Scholar
  141. Smith, F.E., and Baylor, E.R. (1953). Colour responses in the cladocera and their ecological significance. Am. Nat. 87:49–55.CrossRefGoogle Scholar
  142. Smith, K.C., and Macagno, E.R. (1990). UV photoreceptors in the compound eye of Daphnia magna (Crustacea, Branchiopoda): A fourth spectral class in a single ommatidia. J. Comp. Physiol. A. 166:597–606.PubMedCrossRefGoogle Scholar
  143. Snyder, A.W. (1979). The physics of vision in compound eyes. In: Handbook of Sensory Physiology: Comparative Physiology and Evolution of Vision in Invertebrates (Autrum, H., ed.), pp. 225–313. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
  144. Srinivasan, M.V., and Bernard, G.D. (1975). The effect of motion on visual acuity of the compound eye: A theoretical analysis. Vision Res. 15:515–525.PubMedCrossRefGoogle Scholar
  145. Stearns, D.E., and Forward, R.B., Jr. (1984). Photosensitivity of the calanoid copepod, Acartia tonsa. Mar. Biol. 82:85–90.CrossRefGoogle Scholar
  146. Stowe, S. (1980). Rapid synthesis of photoreceptor membrane and assembly of new microvilli in a crab at dusk. Cell Tiss. Res. 211:419–440.CrossRefGoogle Scholar
  147. Stowe, S., Fukudome, H., and Tanaka, K. (1986). Membrane turnover in crab photoreceptors studied by high-resolution scanning electron microscopy and by a new technique of thicksection transmission electron microscopy. Cell Tiss. Res. 245:51–60.CrossRefGoogle Scholar
  148. Suzuki, T., Makino-Tasaka, M.,and Eguchi, E. (1984). 3-dehydroretinal (vitamin A2 aldehyde) in crayfish eye. Vision Res. 24:783–787.PubMedCrossRefGoogle Scholar
  149. van Dover, C.L., Szuts, E.Z., Chamberlain, S.C., and Cann, J.R. (1989). A novel eye in “eyeless” shrimp from hydrothermal vents of the mid-Atlantic ridge. Nature 337:458–460.PubMedCrossRefGoogle Scholar
  150. Wald, G., and Hubbard, R. (1957). Visual pigment of a decapod crustacean: The lobster. Nature 180:278–280.PubMedCrossRefGoogle Scholar
  151. Wald, G., and Seidin, E.B. (1968). Spectral sensitivity of the common prawn, Palaemonetes vulgaris. J. Gen. Physiol. 51:694–700.PubMedCrossRefGoogle Scholar
  152. Warrant, E.J. (1999). Seeing better at night: Life style, eye design and the optimum strategy of spatial and temporal summation. Vision Res. 39:1611–1630.PubMedCrossRefGoogle Scholar
  153. Widder, E.A., Hiller-Adams, P., and Case, J.F (1987). A multichannel microspectrophotometer for visual pigment investigations. Vision Res. 27: 1047–1055.PubMedCrossRefGoogle Scholar
  154. Williams, B.G., Greenwood, J.G., and Jillet, J.B. (1985). Seasonality and duration of the developmental stages of Heterosquilla tricarinata (Claus, 1871) (Crustacea: Stomatopoda) and the replacement of the larval eye at metamorphosis. Bull. Mar. Sci. 36:104–114.Google Scholar
  155. Zeiger, J., and Goldsmith, T.H. (1989). Spectral properties of porphyropsin from an invertebrate. Vision Res. 29:519–527.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2003

Authors and Affiliations

  • N. Justin Marshall
    • 1
  • Thomas W. Cronin
    • 2
  • Tamara M. Frank
    • 3
  1. 1.Vision Touch and Hearing Research Centre, School of Biomedical SciencesUniversity of QueenslandBrisbaneAustralia
  2. 2.Department of Biological SciencesUniversity of MarylandBaltimoreUSA
  3. 3.Harbor Branch Oceanographic InstitutionBioluminescence Research GroupFort PierceUSA

Personalised recommendations