Clinical PET pp 228-246 | Cite as

Brain Tumors

  • Franklin C. L. Wong
  • E. Edmund Kim


In 2003, it is estimated that 18,300 new cases of primary brain and nervous system tumors will occur, with 13,100 deaths.1 Every year approximately 35,000 adult Americans develop primary or metastatic brain tumors.2 Central nervous system (CNS) tumors are the most prevalent solid tumors in children under 15 years of age, the second leading cancer-related cause of death after leukemia in children, and the third leading cancer-related cause of death in adolescents and adults between the ages of 15 and 35 years.2 The majority of intracranial tumors occur in patients over the age of 45 years, and evidence suggests that the incidence of malignant gliomas among the elderly is increasing.3


Positron Emission Tomography Brain Tumor Standard Uptake Value Positron Emission Tomography Study Primary Central Nervous System Lymphoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jamal A, Murray T, Samuels A, et al. Cancer statistics, 2003. CA Cancer J Clin 2000; 53: 5–26.CrossRefGoogle Scholar
  2. 2.
    Mahaley MS Jr, Mettlin C, Natarajan N. National survey of patterns of care for brain-tumor patients. J Neurosurg 1989; 71: 826–836.PubMedCrossRefGoogle Scholar
  3. 3.
    Grieg NH, Ries LG, Yancik R. Increasing annual incidence of primary malignant brain tumors in the elderly. J Natl Cancer Inst 1990; 82: 1621–1624.CrossRefGoogle Scholar
  4. 4.
    Pershouse MA, Stubblefield E, Hadi A. Analysis of the functional role of chromosome 10 loss in human glioblastomas. Cancer Res 1993; 53: 50435050.Google Scholar
  5. 5.
    Lang FF, Miller DC, Koslow M. Pathways leading to glioblastoma multiforme: a molecular analysis of genetic alterations in 65 histocytic tumors. J Neurosurg 1994; 81: 427–436.PubMedCrossRefGoogle Scholar
  6. 6.
    Bigner SH, Mark J, Burger PC. Specific chromosomal abnormalities in malignant human gliomas. Cancer Res 1988; 48: 405–409.PubMedGoogle Scholar
  7. 7.
    Wong AJ, Zoltick PW, Moscatello DK. The molecular biology and molecular genetics of astrocytic neoplasms. Semin Oncol 1994; 21: 126–138.Google Scholar
  8. 8.
    Kyritsis AP, Bondy ML, Xiao MI. Germline p53 gene mutations in subsets of glioma patients. J Natl Cancer Inst 1994; 86: 344–349.PubMedCrossRefGoogle Scholar
  9. 9.
    Dumanski JP, Rouleau GA, Nordenskjold M. Molecular genetic analysis of chromosome 22 in 81 cases of meningioma. Cancer Res 1990; 50: 5863–5868.PubMedGoogle Scholar
  10. 10.
    Daumas-Dupont C, Scheithauer B, O’Fallon J. Grading of astrocytomas, a simple and reproducible method. Cancer 1988; 62: 2152–2157.CrossRefGoogle Scholar
  11. 11.
    Bruner JM. Neuropathology of malignant gliomas. Semin Oncol 1994; 21: 126–138.PubMedGoogle Scholar
  12. 12.
    Nelson JS, Tsukada Y, Schoenfeld D. Necrosis as a prognostic criterion in malignant supratentorial astrocytic gliomas. Cancer 1983; 52: 550–555.PubMedCrossRefGoogle Scholar
  13. 13.
    de la Monte SM. Uniform lineage of oligodendroglioma. Am J Pathol 1989; 135: 529–540.PubMedGoogle Scholar
  14. 14.
    Sawyer JR, Sammartino G, Husain M. Chromosome aberrations in four ependymomas. Cancer Genet Cytogenet 1994; 74: 132–138.PubMedCrossRefGoogle Scholar
  15. 15.
    Deutsch M. The impact of myelography on the treatment results for medulloblastoma. Int J Radiat Oncol Biol Phys 1984; 8: 2023–2028.Google Scholar
  16. 16.
    Carrie C, Lasset C, Blay JY. Medulloblastoma in adults. Surgical and prognostic factors. Radiother Oncol 1993; 29: 301–307.PubMedCrossRefGoogle Scholar
  17. 17.
    Murtagh R, Linden C. Neuroimaging of intracranial meningioma. Neurosurg Clin North Am 1994; 5: 217–233.Google Scholar
  18. 18.
    Jackler RK, Pitts LH. Acoustic neuroma. Neurosurg Clin North Am 1990; 1: 199–204.Google Scholar
  19. 19.
    Miller DC, Hochberg FH, Harris NL. Pathology with clinical correlations of primary central nervous system non-Hodgkin’s lymphoma. Cancer 1994; 74: 1383–1397.PubMedCrossRefGoogle Scholar
  20. 20.
    Murray K, Kim L, Cox J. Primary malignant lymphoma of the central nervous system. J Neurosurg 1986; 65: 600–606.PubMedCrossRefGoogle Scholar
  21. 21.
    Delathe JY, Krol G, Thaler HT. Distribution of brain metastases. Arch Neurol 1988; 45: 741–744.CrossRefGoogle Scholar
  22. 22.
    Patchell RA, Posner JB. Neurologic complications of systemetic cancer. Neurol Clin 1985; 3: 729–750.PubMedGoogle Scholar
  23. 23.
    Brant-Zawadzki M, Badami P, Mills CM. Primary intracranial brain imaging. A comparison of magnetic resonance and CT. Radiology 1984; 150: 435440.Google Scholar
  24. 24.
    Dean BL, Drayer BP, Bird CR. Gliomas: classification with MR imaging. Radiology 1990; 174: 411–415.PubMedGoogle Scholar
  25. 25.
    Johnson PC, Hunt SJ, Drayer BP. Human cerebral gliomas: correlation of postmortem MR imaging and neuropathologic findings. Radiology 1989; 170: 211–217.PubMedGoogle Scholar
  26. 26.
    Spagnoli MV, Grossman RI, Packer RJ. Magnetic resonance imaging of gliomatosis cerebri. Neuroradiology 1987; 29: 15–18.PubMedCrossRefGoogle Scholar
  27. 27.
    Roman-Goldstein SM, Goldman DL, Howieson J. MR of primary CNS lymphoma in immunologically normal patients. AJNR 1992; 13: 1207–1213.PubMedGoogle Scholar
  28. 28.
    Healy ME, Hesselink JR, Press GA. Increased detection of intracranial metastases with intravenous Gd-DTPA. Radiology 1987; 165: 619–624.PubMedGoogle Scholar
  29. 29.
    Yuh WT, Engelken JD, Muhonen MR. Experience with high dose gadolinium MR imaging in the evaluation of brain metastases. AJNR 1992; 13: 335345.Google Scholar
  30. 30.
    Hakim AM. The cerebral ischemic penumbra. Can J Neurol Sci 1987; 14: 557–559.PubMedGoogle Scholar
  31. 31.
    Crumrine RC, LaManna JC. Regional cerebral metabolites, blood flow, plasma volume and mean transit time in total cerebral ischemia in the rat. J Cereb Blood Flow Metab 1991; 11: 272–282.PubMedCrossRefGoogle Scholar
  32. 32.
    LeBihan D, Turner R, Moonen CTW, et al. Imaging of diffusion and microcirculation with gradient sensitization: design, strategy and significance. J Magn Reson Imaging 1991; 1: 7–28.CrossRefGoogle Scholar
  33. 33.
    Tsuruda J, Chew W, Moseley M, et al. Diffusion-weighted MRI of extraaxial tumors. Magn Reson Med 1991; 19: 316–320.PubMedCrossRefGoogle Scholar
  34. 34.
    Weidner N, Semple JP, Welch WR, et al. Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 1991; 324: 1–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Ordidge RJ, Connelly A, Lohman JAB. Image-selected in vivo spectroscopy (ISIS). A new technique for spatially selective NMR spectroscopy. J Magn Reson 1986; 66: 283–294.Google Scholar
  36. 36.
    Bottomley PA. Spatial localization in NMR spectroscopy. Ann NY Acad Sci 1987; 508: 333.PubMedCrossRefGoogle Scholar
  37. 37.
    Luyten P, Marien AJH, Heindel W. Metabolic imaging of patients with intracranial tumors. H-I MR spectroscopic imaging and PET. Radiology 1990; 176: 791–799.PubMedGoogle Scholar
  38. 38.
    Frahm J, Bruhn H, Gyngell ML. Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 1989; 9: 79–93.PubMedCrossRefGoogle Scholar
  39. 39.
    Maudsley AA, Hilal SK, Perman WH. Spatially resolved high-resolution spectroscopy by four-dimensional NMR. J Magn Reson 1983; 51: 147–152.Google Scholar
  40. 40.
    Alger JR, Frank JA, Bizzi A. Metabolism of human gliomas: assessment with H-1 MR spectroscopy and F-18 fluorodeoxyglucose PET. Radiology 1990; 177: 633–641.PubMedGoogle Scholar
  41. 41.
    Frahm J, Bruhn H, Hanicke W. Localized proton NMR spectroscopy of brain tumors using short echo time STEAM sequences. J Comput Assist Tomogr 1991; 15: 915–922.PubMedCrossRefGoogle Scholar
  42. 42.
    Mattiello J, Evelhoch JL, Brown E. Effect of photodynamic therapy on RIF1 tumor metabolism and blood flow examined 31p and 1H NMR spectroscopy. Nucl Magn Reson Biomed 1990; 3: 64–70.Google Scholar
  43. 43.
    Segebarth CM, Baleriaux DF, Luyten PR. Detection of metabolic heterogeneity of human intracranial tumors in vivo by 1H NMR spectroscopic imaging. Magn Reson Med 1990; 13: 62–76.PubMedCrossRefGoogle Scholar
  44. 44.
    Ito M, Lammertsma AA, Wise RSJ, et al. Measurement of regional cerebral blood flow and oxygen utilization in patients with cerebral tumors: analytical techniques and preliminary results. Neuroradiology 1982; 23: 63–74.PubMedCrossRefGoogle Scholar
  45. 45.
    Yamamoto YL, Thompson CJ, Meyer E, et al. Dynamic positron emission tomography for study of cerebral hemodynamics in a cross section of the head using positron-emitting 67Ga-EDTA and 77Kr. J Comput Assist Tomogr 1977; 1: 43.PubMedCrossRefGoogle Scholar
  46. 46.
    Baba T, Fukui M, Takeshita I, et al. Selective enhancement of intratumoral blood flow in malignant gliomas using intra-arterial adenosine triphosphate. J Neurosurg 1990; 72 (6): 907–911.PubMedCrossRefGoogle Scholar
  47. 47.
    Nariai T, Senda M, Ishii K, et al. Three-dimensional imaging of cortical structure, function and glioma for tumor resection. J Nucl Med 1997; 38 (10): 1563–1568.PubMedGoogle Scholar
  48. 48.
    Rhodes CG, Wise RJS, Gibbs JM, et al. In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomas. Ann Neurol 1983; 14: 614–626.PubMedCrossRefGoogle Scholar
  49. 49.
    Di Chiro G, De La Paz RL, Brooks RA, et al. Glucose utilization of cerebral gliomas measured by F-18 fluorodeoxyglucose and PET. Neurology 1982; 32: 1323–1329.PubMedCrossRefGoogle Scholar
  50. 50.
    Weber G. Enzymology of cancer cells. N Engl J Med 1997; 29: 486.Google Scholar
  51. 51.
    Kubota R, Kubota K, Yamada S, et al. Active and passive mechanisms of F-18 fluorodeoxyglucose uptake by proliferating and prenecrotic cancer cells in vivo: a microautoradiographic study. J Nucl Med 1994; 35: 1067 1075.Google Scholar
  52. 52.
    Fulham MJ, Melisi JW, Nishimiya J, et al. Neuroimaging of juvenile pilocytic astrocytomas: an enigma. Radiology 1994; 189 (1): 221–225.Google Scholar
  53. 53.
    Derlon J-M, Bourdet C, Bustany P, et al. C-11 L-methionine uptake in gliomas. Neurosurgery 1989; 25 (5): 720–728.PubMedCrossRefGoogle Scholar
  54. 54.
    Conti PS, Hilton J, Wong DF, et al. High performance liquid chromatography of carbon-11-labeled compounds. J Nucl Med 1994; 21 (8): 1045–1051.Google Scholar
  55. 55.
    Yung BCK, Wand GS, Blevins L, et al. In vivo assessment of dopamine receptor density in pituitary macroadenoma and correlation with in vitro assay. J Nucl Med 1993; 34 (5): 133.Google Scholar
  56. 56.
    Pappata S, Cornu P, Samson Y, et al. PET study of carbon-11-PK-11195 binding to peripheral type benzodiazepine sites in glioblastoma: a case report. J Nucl Med 1991; 32 (8): 1608–1610.PubMedGoogle Scholar
  57. 57.
    Lichtor J, Dohrmann GJ. Oxidative metabolism and glycolysis in benign brain tumors. J Neurosurg 1987; 67: 336–340.PubMedCrossRefGoogle Scholar
  58. 58.
    Valk PE, Budinger TF, Levin VA, et al. PET of malignant cerebral tumors after interstitial brachytherapy. J Neurosurg 1998; 69: 830–838.Google Scholar
  59. 59.
    Holzer T, Heerholz K, Jeske J, et al. FDG-PET as a prognostic indicator in radiochemotherapy of glioblastoma. J Comput Assist Tomogr 1993; 17 (5): 681–687.PubMedCrossRefGoogle Scholar
  60. 60.
    O’Doherty MJ, Barrington SF, Campbell M, et al. PET scanning and the human immunodeficiency virus-positive patient. J Nucl Med 1997; 38 (10): 1575–1583.PubMedGoogle Scholar
  61. 61.
    Gambhir SS, Czernin J, Schwimmer J, et al. A tabulated summary of the FDG PET literature. J Nucl Med 2001; 32: 1S - 93S.Google Scholar
  62. 62.
    Camargo EE, Szabo Z, Links JM, et al. The influence of biological and technical factors on the variability of global and regional brain metabolism of 2-F-18-fluoro-2-deoxy-D-glucose. J Cerebral Blood Flow Metab 1992; 12: 281–290.CrossRefGoogle Scholar
  63. 63.
    Blacklock JB, Oldfield EH, Di Chiro G, et al. Effect of barbiturate coma on glucose utilization in normal brain versus gliomas. J Neurosurg 1987; 67: 71–75.PubMedCrossRefGoogle Scholar
  64. 64.
    Cremerius U, Bares R, Weis J, et al. Fasting improves discrimination of grade 1 and atypical or malignant meningioma in FDG-PET. J Nucl Med 1997; 38 (1): 26–30.PubMedGoogle Scholar
  65. 65.
    Rohren E, Provenzale J, Barboriak, et al. Screening for cerebral metastases with FDG-PET in patients undergoing whole-body staging of non-central nervous system malignancy. Radiology 2003; 226 (1): 181–187.PubMedCrossRefGoogle Scholar
  66. 66.
    Jeon H-J, Chung J-K, Kim Y-K, et al. Usefulness of whole-body F-18 FDG PET in patients with suspected metastatic brain tumors. J Nucl Med 2002; 43 (11): 1432–1437.Google Scholar
  67. 67.
    Bëlohlâvek O, Simonovâ G, Kantorovâ I, et al. Brain metastases after stereo-tactic radiosurgery using the Leksell gamma knife: can FDG PET help to differentiate radionecrosis from tumour progression? Eur J Nucl Med 2003; 30: 96–100.CrossRefGoogle Scholar
  68. 68.
    O’Tuama LA, Phillips PC, Strauss LC, et al. Two-phase C-11 L-methionine PET in childhood brain tumors. Pediatr Neurol 1990; 6 (3): 163–170.PubMedCrossRefGoogle Scholar
  69. 69.
    Goldman S, Levivier M, Pirotte B, et al. Regional methionine and glucosse uptake in high-grade gliomas: a comparative study on PET-guided stereo-tactic biopsy. J Nucl Med 1997; 38: 1459–1462.PubMedGoogle Scholar
  70. 70.
    Inoue T, Shibasaki T, Oriuchi N, et al. F-18 a-methyl tyrosine PET studies in patients with brain tumors. J Nucl Med 1999; 40 (3): 399–405.PubMedGoogle Scholar
  71. 71.
    Weber W, Bartenstein P, Gross MW, et al. Fluorine-l8-FDG PET and iodine-123-IMT SPECT in the evaluation of brain tumors. J Nucl Med 1997; 38 (5): 802–808.PubMedGoogle Scholar
  72. 72.
    Tjuvajev JG, Macapinlac HA, Daghighian F, et al. Imaging of brain tumor proliferative activity with iodine-131-iododeoxyuridine. J Nucl Med 1994; 35 (9): 1407–1417.PubMedGoogle Scholar
  73. 73.
    Roelcke U, Hausmann O, Merlo A, et al. PET imaging drug distribution after intratumoral injection: the case for I-124 iododeoxyuridine in malignant gliomas. J Nucl Med 2002: 43 (11): 1444–1451.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Franklin C. L. Wong
  • E. Edmund Kim

There are no affiliations available

Personalised recommendations