Skip to main content

Molecular Imaging of Biological Processes with PET: Evaluating Biologic Bases of Cerebral Function

  • Chapter
PET

Abstract

Neuroimaging studies with positron emission tomography (PET) have advanced our understanding of the human brain by noninvasively assessing several aspects of cerebral biology and biochemistry. These aspects include glucose metabolic rates, blood flow, blood-brain barrier permeability, enzyme activity, neurotransmitter synthesis and release, receptor subtype binding, and gene expression. Changes in these processes occur with normal development and aging, neurodegenerative and cerebrovascular diseases, head trauma, psychiatric disorders, and chemotoxic insults. PET can be used to study all of these aspects and also the pharmacokinetic and pharmacodynamic effects of drugs on the central nervous system. The data that are generated can be used to address questions of relevance to basic neuroscience as well as to the clinical management of patients with neuropsychiatric disorders. Accordingly, the following sections highlight both research-oriented and clinically oriented applications of brain PET, providing illustrations of how the power of this methodology to image and quantify neurobiologic parameters can impact upon the assessment of brain function and dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci. 2000; 97: 9226–9233.

    PubMed  CAS  Google Scholar 

  2. Huang SC. Anatomy of SUV. Standardized uptake value. Nucl Med Biol. 2000; 27: 643–646.

    PubMed  CAS  Google Scholar 

  3. Gottstein U, Held K. Effects of aging on cerebral circulation and metabolism in man. Acta Neurol Scand. 1979; 72 (Suppl 60): 54–55.

    Google Scholar 

  4. Dastur DK, Lane MH, Hansen DB, et al. Effects of aging on cerebral circulation and metabolism in man. In: J.E. Birren, R.N. Butler, et al., eds. Human Aging: A Biological and Behavioral Study, U.S. Government Printing Office, Washington, DC; 1963; 59–78.

    Google Scholar 

  5. Kety SS. Circulation and metabolism of the human brain in health and disease. Am J Med. 1950; 8: 205–217.

    PubMed  CAS  Google Scholar 

  6. Kety SS, Schmidt CE. Human cerebral blood flow and oxygen consumption as related to aging. J Chronic Dis. 1956; 3: 428–486.

    Google Scholar 

  7. Smith CB, Sokoloff L. The energy metabolism of the brain. In: The Molecular Basis of Neuropathology. Arnold, London; 1981; 104–131.

    Google Scholar 

  8. Sokoloff L. The metabolism of the central nervous system in vivo. In: J Field, HW Magoun, VE Hall, eds. Handbook of Physiology—Neurophysiology Vol. 3. American Physiological Society, Washington, DC; 1960; 1843–1864.

    Google Scholar 

  9. Kety SS, Schmidt CE. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure and normal values. J Clin Invest. 1948; 27: 476–483.

    Google Scholar 

  10. Alexander SG, Smith TC, Stroble G, et al. Cerebral carbohydrate metabolism of man during respiratory and etabolic alkalosis. J Appl Physiol. 1968; 24: 66–72.

    PubMed  CAS  Google Scholar 

  11. Takeshita H, Okuda Y, Sari A. The affects of ketamine on cerebral circulation of metabolism in man. Anesthesiology. 1972; 36: 69–75.

    PubMed  CAS  Google Scholar 

  12. Sokoloff L, Reivich M, Kennedy C, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anesthesized albino rat. J Neurochem. 1977; 28: 897–916.

    PubMed  CAS  Google Scholar 

  13. Huang S-C, Phelps ME, Hoffman EJ, et al. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol. 1980; 238: E69 - E82.

    PubMed  CAS  Google Scholar 

  14. Kuhl DE, Phelps ME, Kowell AP, Metter EJ, Selin C, Winter J. Mapping local metabolism and perfusion in normal and ischemic brain by emission computed tomography of ‘8FDG and 13NH3. Ann Neurol. 1980; 8: 47–60.

    PubMed  CAS  Google Scholar 

  15. Mazziotta JC, Phelps ME, Miller J. Tomographic mapping of human cerebral metabolism: Normal unstimulated state. Neurology. 1981; 31: 503–516.

    Google Scholar 

  16. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxyglucose: Validation of method. Ann Neurol. 1979; 6: 371–388.

    PubMed  CAS  Google Scholar 

  17. Reivich N, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Hoffman E, Alavi A, Sokoloff L. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res. 1979; 44: 127–137.

    PubMed  CAS  Google Scholar 

  18. Kuhl DE, Phelps ME, Markham C, et al. Local cerebral glucose metabolism in Huntington’s disease determined by emission computed tomography of 18F-flurodeoxyglucose. J Cereb Blood Flow Metab. 1981; I (Suppl. 1): S459 - S460.

    Google Scholar 

  19. Minoshima S, Frey KA, Burdette JH, Vander Borght T, Koeppe RA, Kuhl DE. Interpretation of metabolic abnormalities in Alzheimer’s disease using three-dimensional stereotactic surface projections (3D-SSP) and normal database. J Nucl Med. 1995; 36: 237 P.

    Google Scholar 

  20. Moeller JR, Ishikawa T, Dhawan V, et al. The metabolic topography of normal aging. J Cereb Blood Flow Metab. 1996; 16: 385–398.

    PubMed  CAS  Google Scholar 

  21. Ishii K, Sakmoto S, Sasaki M, et al. Cerebral glucose metabolism in patients with frontotemporal dementia. J Nucl Med. 1998; 39: 1875–1878.

    PubMed  CAS  Google Scholar 

  22. Law I, Iida H, Holm S, et al. Quantitation of regional cerebral blood flow corrected for partial volume effect using 0–15 water and PET: II. Normal values and gray matter blood flow response to visual activation. J Cereb Blood Flow Metab. 2000; 20: 1252–1263.

    PubMed  CAS  Google Scholar 

  23. Huang SC, Carson RE, Hoffman EJ, et al. Quantitative measurement of local cerebral blood flow in humans by positron computed tomography and 150-water. J Cereb Blood Flow Metab. 1983; 3: 141–153.

    PubMed  CAS  Google Scholar 

  24. Meltzer CC, Cantwell MN, Greer PI, et al. Does cerebral blood flow decline in healthy aging? A PET study with partial-volume correction. J Nucl Med. 2000; 41: 1842–1848.

    PubMed  CAS  Google Scholar 

  25. Phelps ME, Huang SC, Hoffman EJ, et al. Validation of tomographic measurement of cerebral blood volume with C-11 labeled carboxyhemoglobin. J Nucl Med. 1979; 20: 328–334.

    PubMed  CAS  Google Scholar 

  26. Celesia GG, Polcyn RE, Holden JE, et al. Visual evoked potentials and positron emission tomographic mapping of regional cerebral blood flow and cerebral metabolism: Can the neuronal potential generators be visualized? Electroencephalogr Clin Neurophysiol. 1982; 54: 243–256.

    PubMed  CAS  Google Scholar 

  27. Heiss WD, Kloster G, Vyska K, et al. Regional cerebral distribution of 11C-methyl-Dglucose compared with CT perfusion patterns in stroke. J Cereb Blood Flow Metab. 1981; 1 (Suppl. 1): 5506–5507.

    Google Scholar 

  28. Yamamoto YL, Little S, Thompson C, et al. Positron emission tomography following EC-IC bypass surgery. Acta Neurol Scand. 1979; 60 (Suppl. 72): 522–523.

    Google Scholar 

  29. Alpert NM, Ackerman RH, Correia JA, et al. Measurement of rCBF and rCMRO2 by continuous inhalation of 150-labeled CO2 and 02. Acta Neurol Scand. 1977; 56 (Suppl. 72): 186–187.

    Google Scholar 

  30. Frackowiak R, Lenzi G, Jones T, et al. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 150 and positron emission tomography: Theory, procedure and normal values. J Comput Assist Tomogr. 1980; 4: 727–736.

    PubMed  CAS  Google Scholar 

  31. Jones T, Chesler DA, Ter-Pogossian MM. The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man. Br J Radiol. 1976; 49: 339–343.

    PubMed  CAS  Google Scholar 

  32. Lenzi GL, Frackowiak RS, Jones T, et al. CMRO2 and CBF by the oxygen-15 inhalation techniques: Results in normal volunteers and cerebrovascular patients. Eur Neurol. 1981; 20: 285–290.

    PubMed  CAS  Google Scholar 

  33. Lenzi GL, Frackowiak RS, Jones T. Cerebral oxygen metabolism and blood flow in human cerebral ischemic infarction. J Cereb Blood Flow Metab. 1982; 2: 321–335.

    PubMed  CAS  Google Scholar 

  34. Hoyer S. Normal and abnormal circulation and oxidative metabolism in the aging human brain. J Cereb Blood Flow Metab. 1982; 2 (Suppl. 1): S10 - S13.

    PubMed  Google Scholar 

  35. Huang SC, Phelps ME, Carson RE, et al. Tomographic measurement of local cerebral blood flow in man with 0–15 water. J Cereb Blood Flow Metab. 1981; 1 (Suppl. 1): S31 - S32.

    Google Scholar 

  36. Lammertsma AA, Frackowiak RS, Lenzi GL, et al. Accuracy of the oxygen-15 steady state technique for measuring CBF and CMRO2: Tracer modeling, statistics and spatial sampling. J Cereb Blood Flow Metab. 1981; 1 (Suppl. 1): S3 - S4.

    Google Scholar 

  37. Frackowiak RS, Jones T, Lenzi GL, et al. Regional cerebral oxygen utilization and blood flow in normal man using oxygen-15 and positron emission tomography. Acta Neurol Scand. 1980; 62: 336–344.

    PubMed  CAS  Google Scholar 

  38. Vallone D, Picetti R, Borrelli E. Structure and function of dopamine receptors. Neurosci Biobehav Rev. 2000; 24: 125–132.

    PubMed  CAS  Google Scholar 

  39. Volkow ND, Fowler JS, Gatley SJ, et al. PET evaluation of the dopamine system of the human brain. J Nucl Med. 1996; 37: 1242–1256.

    PubMed  CAS  Google Scholar 

  40. Verhoeff NP. Radiotracer imaging of dopaminergic transmission in neuropsychiatric disorders. Psychopharmacology (Berl) 1999; 147: 217–249.

    CAS  Google Scholar 

  41. Cho S, Neff NH, Hadjiconstantinou M. Regulation of tyrosine hydroxylase and aromatic L-amino acid decarboxylase by dopaminergic drugs. Eur J Pharmacol. 1997;323:149–157.

    Google Scholar 

  42. Cumming P, Kuwabara H, Ase A, Gjedde A. Regulation of DOPA decarboxylase activity in brain of living rat. J Neurochem. 1995; 65: 1381–1390.

    PubMed  CAS  Google Scholar 

  43. Volkow ND, Fowler JS, Ding YS, Wang GJ, Gatley SJ. Positron emission tomography radioligands for dopamine transporters and studies in human and nonhuman primates. Adv Pharmacol. 1998; 42: 211–214.

    PubMed  CAS  Google Scholar 

  44. Soucy JP, Mrini A, Lafaille F, Doucet G, Descarries L. Comparative evaluation of [3H]WIN 35428 and [3H]GBR 12935 as markers of dopamine innervation density in brain. Synapse. 1997; 25: 163–175.

    PubMed  CAS  Google Scholar 

  45. Brownell A, Elmaleh DR, Meltzer PC, et al. Cocaine congeners as PET imaging probes for dopamine terminals. J Nucl Med. 1996; 37: 1186–1192.

    PubMed  CAS  Google Scholar 

  46. Morris ED, Alpert NM, Fischman AJ. Comparison of two compartmental models for describing receptor ligand kinetics and receptor availability in multiple injection PET studies. J Cereb Blood Flow Metabol. 1996; 16: 841–853.

    CAS  Google Scholar 

  47. Farde L, Hall H, Pauli S, Halldin C. Variability in D2-dopamine receptor density and affinity: a PET study with [11C]raclopride in man. Synapse. 1995; 20: 200–208.

    PubMed  CAS  Google Scholar 

  48. Meyer JH, Ichise M. Modeling of receptor ligand data in PET and SPECT imaging: a review of major approaches. J Neuroimag. 2001; 11: 30–39.

    CAS  Google Scholar 

  49. Piggott MA, Marshall EF, Thomas N, et al. Dopaminergic activities in the human stria-turn: rostrocaudal gradients of uptake sites and of D1 and D2 but not of D3 receptor binding or dopamine. Neuroscience. 1999; 90: 433–445.

    PubMed  CAS  Google Scholar 

  50. Laruelle M. Imaging dopamine transmission in schizophrenia. A review and meta-analysis. Quart J Nucl Med. 1998; 42: 211–221.

    CAS  Google Scholar 

  51. Laruelle M. Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metabol. 2000; 20: 423–451.

    CAS  Google Scholar 

  52. Murphy DL, Andrews AM, Wichems CH, et al. Brain serotonin neurotransmission: an overview and update with an emphasis on serotonin subsystem heterogeneity, multiple receptors, interactions with other neurotransmitter systems, and consequent implications for understanding the actions of serotonergic drugs. J Clin Psychiatry. 1998; 59: 4–12.

    PubMed  CAS  Google Scholar 

  53. Chugani DC, Muzik O, Chakraborty P, Mangner T, Chugani HT. Human brain serotonin synthesis capacity measured in vivo with alpha-[C-11]methyl-L-tryptophan. Synapse. 1998; 28: 33–43.

    PubMed  CAS  Google Scholar 

  54. Chugani DC, Niimura K, Chaturvedi S, et al. Increased brain serotonin synthesis in migraine. Neurology. 1999; 53: 1473–1479.

    PubMed  CAS  Google Scholar 

  55. Shoaf SE, Carson RE, Hommer D, et al. The suitability of [11C]-alpha-methyl-L-tryptophan as a tracer for serotonin synthesis: studies with dual administration of [11C] and [14C] labeled tracer. J Cereb Blood Flow Metabol. 2000; 20: 244–252.

    CAS  Google Scholar 

  56. Staley JK, Malison RT, Innis RB. Imaging of the serotonergic system: interactions of neuroanatomical and functional abnormalities of depression. Biol Psychiatry. 1998; 44: 534–549.

    PubMed  CAS  Google Scholar 

  57. Szabo Z, Scheffel U, Mathews WB, et al. Kinetic analysis of [11C]McN5652: a serotonin transporter radioligand. J Cereb Blood Flow Metab. 1999; 19: 967–981.

    PubMed  CAS  Google Scholar 

  58. Gündisch D. Nicotinic acetylcholine receptors and imaging. Curr Pharmaceut Design. 2000; 6: 1143–1157.

    Google Scholar 

  59. Muzic RF Jr, Berridge MS, Friedland RP, Zhu N, Nelson AD. PET quantification of specific binding of carbon-11-nicotine in human brain. J Nucl Med. 1998; 39: 2048–2054.

    PubMed  CAS  Google Scholar 

  60. Ding YS, Molina PE, Fowler JS, et al. Comparative studies of epibatidine derivatives [18F]NFEP and [18F]N-methyl-NFEP: kinetics, nicotine effect, and toxicity. Nucl Med Biol. 1999; 26: 139–148.

    PubMed  CAS  Google Scholar 

  61. Zubieta JK, Koeppe RA, Mulholland GK, Kuhl DE, Frey KA. Quantification of muscarinic cholinergic receptors with [11C]NMPB and positron emission tomography: method development and differentiation of tracer delivery from receptor binding. J Cereb Blood Flow Metab. 1998; 18: 619–631.

    PubMed  CAS  Google Scholar 

  62. Knapp FF Jr, McPherson DW, Luo H, Zeeburg B. Radiolabeled ligands for imaging the muscarinic-cholinergic receptors of the heart and brain. Anticancer Res. 1997; 17: 1559–1572.

    PubMed  CAS  Google Scholar 

  63. Mehta AK, Ticku MK. An update on GABAA receptors. Brain Res Rev. 1999; 29: 196–217.

    PubMed  CAS  Google Scholar 

  64. Koepp MJ, Hammers A, Labbé C, et al. 11C-flumazenil PET in patients with refractory temporal lobe epilepsy and normal MRI. Neurology. 2000; 54: 332–339.

    PubMed  CAS  Google Scholar 

  65. Delforge J, Pappata S, Millet P, et al. Quantification of benzodiazepine receptors in human brain using PET, [11C] flumazenil, and a single-experiment protocol. J Cereb Blood Flow Metab. 1995; 15: 284–300.

    PubMed  CAS  Google Scholar 

  66. Koepp MJ, Hand KS, Labbé C, et al. In vivo [11 C] flumazenil-PET correlates with ex vivo [3H]flumazenil autoradiography in hippocampal sclerosis. Ann Neurol. 1998; 43: 618–626.

    PubMed  CAS  Google Scholar 

  67. Cohen RM, Andreason PJ, Doudet DJ, Carson RE, Sunderland T. Opiate receptor avidity and cerebral blood flow in Alzheimer’s disease. J Neurol Sci. 1997; 148: 171–180.

    PubMed  CAS  Google Scholar 

  68. Schadrack J, Willoch F, Platzer S, et al. Opioid receptors in the human cerebellum: evidence from [11C]diprenorphine PET, mRNA expression and autoradiography. Neuroreport. 1999; 10: 619–624.

    PubMed  CAS  Google Scholar 

  69. Zubieta J, Greenwald MK, Lombardi U, et al. Buprenorphine-induced changes in muopioid receptor availability in male heroin-dependent volunteers: a preliminary study. Neuropsychopharmacology 2000; 23: 326–334.

    PubMed  CAS  Google Scholar 

  70. Burn DJ, Rinne JO, Quinn NP, et al. Striatal opioid receptor binding in Parkinson’s disease, striatonigral degeneration and Steele-Richardson-Olszewski syndrome, A [11C]diprenorphine PET study. Brain. 1995; 118: 951–958.

    PubMed  Google Scholar 

  71. Fowler JS, Wang GJ, Logan J, et al. Selective reduction of radiotracer trapping by deuterium substitution: comparison of carbon-ii-L-deprenyl and carbon-11-deprenyl-D2 for MAO B mapping. J Nucl Med. 1995; 36: 1255–1262.

    PubMed  CAS  Google Scholar 

  72. Fowler JS, Volkow ND, Logan J, et al. Slow recovery of human brain MAO B after Ldeprenyl (Selegeline) withdrawal. Synapse 1994; 18: 86–93.

    PubMed  CAS  Google Scholar 

  73. Kapur S, Zipursky R, Jones C, Remington G, Houle S. Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry. 2000; 157: 514–520.

    PubMed  CAS  Google Scholar 

  74. Kapur S, Zipursky RB, Remington G. Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am J Psychiatry. 1999; 156: 286–293.

    PubMed  CAS  Google Scholar 

  75. Chugani HT, Phelps ME. Maturational changes in cerebral function in infants determined by 18FDG positron emission tomography. Science. 1986; 231: 840–843.

    PubMed  CAS  Google Scholar 

  76. Chugani HT, Phelps ME, Mazziotta JC. Positron emission tomography study of human brain functional development. Ann Neurol. 1987; 22: 487–497.

    PubMed  CAS  Google Scholar 

  77. Chugani HT. A critical period of brain development: Studies of cerebral glucose utilization with PET. Preven Med. 1998; 27: 184–188.

    CAS  Google Scholar 

  78. Takahashi T, Shirane R, Sato S, Yoshimoto T. Developmental changes of cerebral blood flow and oxygen metabolism in children. AJNR. 1999; 20: 917–922.

    PubMed  CAS  Google Scholar 

  79. Chugani DC, Muzik O, Behen M, et al. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol. 1999; 45: 287–295.

    PubMed  CAS  Google Scholar 

  80. Schultz SK, O’Leary DS, Boles Ponto LL, et al. Age-related changes in regional cerebral blood flow among young to mid-life adults. NeuroReport. 1999; 10: 2493–2496.

    CAS  Google Scholar 

  81. Mazziotta JC, Phelps ME. Positron emission tomography studies of the brain. In: Phelps M, Mazziotta, J, Schelbert H, eds. Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart, Raven Press: New York; 1986; 493–579.

    Google Scholar 

  82. Evans DA. Estimated prevalence of Alzheimer’s disease in the US. Milbank Q. 1990; 68: 267–289.

    CAS  Google Scholar 

  83. Carr DB, Goate A, Phil D, Morris JC. Current concepts in the pathogenesis of Alzheimer’s disease. Am J Med. 1997; 103: 35–10S.

    Google Scholar 

  84. Ernst RL, Hay JW. The U.S. economic and social costs of Alzheimer’s disease revisited. Am J Pub Health. 1994; 84: 1261–1264.

    CAS  Google Scholar 

  85. National Institute of Aging. Progress Report on Alzheimer’s disease. NIH Publication No. 96–4137. Bethesda, M.D.: National Institute of Aging. 4137. 1996.

    Google Scholar 

  86. Zhang MY, Katzman R, Salmon D, et al. The prevalence of dementia and Alzheimer’s disease in Shanghai, China: impact of age, gender, and education. Ann Neurol. 1990; 27: 428–437.

    PubMed  CAS  Google Scholar 

  87. Katzman R. Education and the prevalence of dementia and Alzheimer’s disease. Neurology. 1993; 43: 13–20.

    PubMed  CAS  Google Scholar 

  88. Stern Y, Alexander GE, Prohovnik I, Mayeux R. Inverse relationship between education and parietotemporal perfusion deficit in Alzheimer’s disease. Ann Neur. 1992; 32: 371–375.

    CAS  Google Scholar 

  89. Stern Y, Alexander GE, Prohovnik I, et al. Relationship between lifetime occupation and parietal flow: Implications for a reserve against Alzheimer’s disease pathology. Neurology. 1995; 45: 55–60.

    PubMed  CAS  Google Scholar 

  90. Alexander GE, Furey ML, Grady CL, et al. Association of premorbid intellectual function with cerebral metabolism in Alzheimer’s disease: Implications for the cognitive reserve hypothesis. Am J Psychiatry. 1997; 154: 165–172.

    PubMed  CAS  Google Scholar 

  91. Silverman DHS, Small GW, Phelps ME. Clinical value of neuroimaging in the diagnosis of dementia: sensitivity and specificity of regional cerebral metabolic and other parameters for early identification of Alzheimer’s Disease. Clin Positron Imag. 1999; 2: 119–130.

    Google Scholar 

  92. Evans DA, Beckett LA, Field TS, et al. Apolipoprotein E epsilon-4 and incidence of Alzheimer disease in a community population of older persons.JAMA. 1997; 277: 822–824.

    PubMed  CAS  Google Scholar 

  93. Small GW, Mazziotta JC, Collins MT, et al. Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease.JAMA. 1995; 273: 942–947.

    PubMed  CAS  Google Scholar 

  94. Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S. Preclinical evidence of Alzheimer’s disease in persons homozygous for the e4 allele for apolipoprotein E. New Engl J Med. 1996; 334: 752–758.

    CAS  Google Scholar 

  95. Small GW, Ercoli LM, Silverman DHS, et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. PNAS. 2000; 97: 6037–6042.

    PubMed  CAS  Google Scholar 

  96. Silverman DHS, Hussain SA, Ercoli LM, et al. Detection of differences in regional cerebral metabolism associated with genotypic and educational risk factors for dementia. Proc Intl Conf Math Eng Tech Med Biol Sci. 2000; 2: 422–427.

    Google Scholar 

  97. Farkas T, Ferris SH, Wolf AP, et al. 18F-2-deoxy-2-fluoro-D-glucose as a tracer in the positron emission tomographic study of senile dementia. Am J Psychiatr. 1982; 139: 352–353.

    PubMed  CAS  Google Scholar 

  98. Benson DF, Kuhl DE, Phelps ME, Cummings JL, Tsai SY. Positron emission computed tomography in the diagnosis of dementia. Trans Am Neurol Assoc. 1981; 106: 68–71.

    PubMed  CAS  Google Scholar 

  99. Frackowiak RS, Pozzilli C, Legg NJ, et al. Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography. Brain. 1981; 104: 753–778.

    PubMed  CAS  Google Scholar 

  100. Foster NL, Chase TN, Fedio P, Patronas NJ, Brooks RA, Di Chiro G. Alzheimer’s disease: focal cortical changes shown by positron emission tomography. Neurology. 1983; 33: 961–965.

    PubMed  CAS  Google Scholar 

  101. Friedland RP, Jagust WJ. Positron and single photon emission tomography in the differential diagnosis of dementia. In: Duara R, ed. Positron Emission Tomography in Dementia. New York: Wiley-Liss, Inc; 1990; 161–177.

    Google Scholar 

  102. Haxby JV. Resting state regional cerebral metabolism in dementia of the Alzheimer type. In: Duara R, ed. Positron Emission Tomography in Dementia. New York: Wiley-Liss, Inc; 1990; 93–116.

    Google Scholar 

  103. Mazziotta JC, Frackowiak RSJ, Phelps ME. The use of positron emission tomography in the clinical assessment of dementia. Sem Nucl Med. 1992; 22: 233–246.

    CAS  Google Scholar 

  104. Herholz K. FDG PET and differential diagnosis of dementia. Alzheim Dis Assoc Disord. 1995; 9: 6–16.

    CAS  Google Scholar 

  105. Pietrini P, Alexander GE, Furey ML, Hampel H, Guazzelli M. The neurometabolic landscape of cognitive decline: in vivo studies with positron emission tomography in Alzheimer’s disease. Int J Psychophysiol. 2000; 37: 87–98.

    PubMed  CAS  Google Scholar 

  106. Smith GS, de Leon MJ, George AE, et al. Topography of cross-sectional and longitudinal glucose metabolic deficits in Alzeimer’s disease. Pathophysiologic implications. Arch Neurol 1992; 49: 1142–1150.

    PubMed  CAS  Google Scholar 

  107. Hoffman JM, Welsh-Bohmer KA, Hanson M, et al. FDG PET imaging in patients with pathologically verified dementia. J Nucl Med. 2000; 41: 1920–1928.

    PubMed  CAS  Google Scholar 

  108. Silverman DH, Small GW, Chang CY, et al. Positron emission tomography in evaluation of dementia. JAMA. 2001; 286: 2120–2127.

    PubMed  CAS  Google Scholar 

  109. Silverman DH, Lu CS, Czernin J, Small GW, Phelps ME. Prognostic value of brain PET in patients with early dementia symptoms, treated or untreated with anticholinesterase therapy. J Nucl Med. 2000; 41: 64 P.

    Google Scholar 

  110. Herholz K. FDG PET and differential diagnosis of dementia. Alzheim Dis Assoc Disord. 1995; 9: 6–16.

    CAS  Google Scholar 

  111. Salmon E, Sadzot B, Maquet P, et al. Differential diagnosis of Alzheimer’s disease with PET. J Nucl Med. 1994; 35: 391–398

    PubMed  CAS  Google Scholar 

  112. Tedeschi E, Hasselbach SG, Waldemar G, et al. Heterogeneous cerebral glucose metabolism in normal pressure hydrocephalus. J Neurol Neurosurg Psychiatr. 1995; 59: 608–615.

    PubMed  CAS  Google Scholar 

  113. Mielke R, Schröder R, Fink GR, Kessler J, Herholz K, Heiss WD. Regional cerebral glucose metabolism and postmortem pathology in Alzheimer’s disease. Acta Neuropathol. 1996; 91: 174–179.

    PubMed  CAS  Google Scholar 

  114. Mielke R, Heiss WD. Positron emisssion tomography for diagnosis of Alzheimer’s disease and vascular dementia. J Neural Transm. 1998; 53 [Suppl]: 237–250.

    CAS  Google Scholar 

  115. Minoshima S, Giordani B, Berent S, Frey K, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol. 1997; 42: 85–94.

    PubMed  CAS  Google Scholar 

  116. Vander Borght T, Minoshima S, Giordani B, et al. Cerebral metabolic differences in Parkinson’s and Alzheimer’s diseases matched for dementia severity. J Nucl Med. 1997; 38: 787–802.

    Google Scholar 

  117. Imamura T, Ishii K, Sasaki M, et al. Regional cerebral glucose metabolism in dementia with Lewy bodies and Alzheimer’s disease: a comparative study using positron emission tomography. Neurosci Lett. 1997; 235: 49–52.

    PubMed  CAS  Google Scholar 

  118. Ishii K, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, Mori E. Paradoxical hippocampus perfusion in mild-to-moderate Alzheimer’s disease. J Nucl Med. 1998; 39: 293–298.

    PubMed  CAS  Google Scholar 

  119. Eidelberg D, Moeller JR, Dhawan V, et al. The metabolic anatomy of Parkinson’s disease: complementary [18F]fluorodeoxyglucose and [18F]fluorodopa positron emission tomography. Mov Disord. 1990; 5: 203–213.

    PubMed  CAS  Google Scholar 

  120. Kaasinen V, Ruottinen HM, Nagren K, et al. Upregulation of putaminal dopamine D2 receptors in early Parkinson’s disease: a comparative PET study with [11C] raclopride and [11C]N-methylspiperone. J Nucl Med. 2000; 41: 65–70.

    PubMed  CAS  Google Scholar 

  121. Morrish P, Sawle G, Brooks D. An [18F]dopa-PET and clinical study of the rate of progression in Parkinson’s disease. Brain. 1996; 119: 585–591.

    PubMed  Google Scholar 

  122. Morrish PK, Rakshi JS, Bailey DL, Sawle GV, Brooks DJ. Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F] dopa PET [see comments]. J Neurol Neurosurg Psychiatry. 1998; 64: 314–319.

    PubMed  CAS  Google Scholar 

  123. Ilgin N, Zubieta J, Reich SG, et al. PET imaging of the dopamine transporter in progressive supranuclear palsy and Parkinson’s disease. Neurology. 1991; 52: 1221–1226.

    Google Scholar 

  124. Eidelberg D, Moeller JR, Dhawan V, et al. The metabolic anatomy of Parkinson’s disease: complementary [18F]fluorodeoxyglucose and [18F]fluorodopa positron emission tomographic studies. Mov Disord. 1990; 5: 203–213.

    PubMed  CAS  Google Scholar 

  125. Brooks DJ, Piccini P, Turjanski N, Samuel M. Neuroimaging of dyskinesia. Ann Neurol. 2000;47:S154–S158; discussion S158–S159.

    Google Scholar 

  126. Lozano AM, Lang AE, Hutchison WD, Dostrovsky JO. New developments in understanding the etiology of Parkinson’s disease and in its treatment. Curr Opin Neurobiol. 1998; 8: 783–790.

    PubMed  CAS  Google Scholar 

  127. Wenning GK, Odin P, Morrish P, et al. Short-and long-term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson’s disease. Ann Neurol. 1997; 42: 95–107.

    PubMed  CAS  Google Scholar 

  128. Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. [Comment In: N Engl J Med. 2001 Mar 8;344(10): 762–3 UI: 21115012]. New Engl J Med. 2001; 344: 710–719.

    Google Scholar 

  129. Mazziotta JC, Phelps ME, Huang S-C, et al. Cerebral glucose utilization reductions in clinically asymptomatic subjects at risk for Huntington’s disease. New Engl J Med. 1987; 316: 357–362.

    PubMed  CAS  Google Scholar 

  130. Engel JJ. Surgery for seizures. New Engl J Med. 1996; 334: 647–652.

    PubMed  Google Scholar 

  131. Engel J Jr, Wieser H-G. Mesial temporal lobe epilepsy. In: Engel J Jr, ed. Epilepsy: A Comprehensive Textbook. Philadelphia: Lippincott-Raven; 1997; 2417–2426.

    Google Scholar 

  132. Bailey P. The surgical treatment of psychomotor epilepsy. J Am Med Assoc. 1951; 145: 365–370.

    PubMed  CAS  Google Scholar 

  133. Engel J Jr. Overview: who should be considered a surgical candidate? In: Engel EJ Jr, ed. Surgical Treatment of the Epilepsies. New York: Raven Press; 1993; 23–34.

    Google Scholar 

  134. Henry TR, Engel J, Mazziotta JC. Clinical evaluation of interictal fluorine-18-fluorodeoxyglucose PET in partial epilepsy. J Nucl Med. 1993; 34: 1892–1898.

    PubMed  CAS  Google Scholar 

  135. Engel JJ, Henry TR, Risinger MW, et al. Presurgical evaluation for partial epilepsy: Relative contributions of chronic depth electrode recordings versus FDG-PET and scalp-sphenoidal ictal EEG. Neurology. 1990; 40: 1670–1677.

    PubMed  Google Scholar 

  136. Risinger MW, Engel J Jr, Van Ness PC, Henry TR, Crandall PH. Ictal localization of temporal lobe seizures with scalp/sphenoidal recordings. Neurology. 1989; 39: 1288–1293.

    PubMed  CAS  Google Scholar 

  137. Ackerman RH, Correia JA, Alpert NA, et al. Positron imaging in ischemic stroke disease using compounds labeles with oxygen-15. Arch Neurol. 1981; 38: 537–543.

    PubMed  CAS  Google Scholar 

  138. Baron JC, Rey A, et al. Reversal of focal “misery-perfusion syndrome” by extra-intracranial arterial bypass in hemodynamic cerebral ischemia: A case study with 150 positron tomography. Stroke. 1981; 12: 454–459.

    PubMed  CAS  Google Scholar 

  139. Grubb RL, Derdeyn CP, Fritsch SM, et al. Importance of hemodynamic factors in the prognosis of symptomatic carotid occlusion. JAMA. 1998; 280: 1055–1060.

    PubMed  Google Scholar 

  140. Yamauchi H, Fukuyama H, Nagahama Y, et al. Significance of increased oxygen extraction fraction in five-year prognosis of major cerebral arterial occlusive diseases. J Nucl Med. 1999; 40: 1992–1998.

    PubMed  CAS  Google Scholar 

  141. Heiss W-D, Grond M, Thiel A, et al. Tissue at risk of infarction rescued by early reperfusion: A positron emission tomography study in systemic recombinant tissue plasminogen activator thrombolysis of acute stroke. J Cereb Blood Flow Metab. 1998; 18: 1298–1307.

    PubMed  CAS  Google Scholar 

  142. Marchal G, Benali K, Iglesias S, Viader F, Derlon J-M, Baron J-C. Voxel-based mapping of irreversible ischaemic damage with PET in acute stroke. Brain. 1999; 122: 2387–2400.

    PubMed  Google Scholar 

  143. ladarola MJ, Berman KF, Zeffiro TA, et al. Neural activation during acute capsaicinevoked pain and allodynia assessed with PET. Brain. 1998; 121: 931–947.

    Google Scholar 

  144. Andersson JLR, Lilja A, Hartvig P, et al. Somatotopic organization along the central sulcus, for pain localization in humans, as revealed by positron emission tomography. Exper Brain Res. 1997; 117: 192–199.

    CAS  Google Scholar 

  145. May A, Kaube H, Buchel C, et al. Experimental cranial pain elicited by capsaicin: A PET study. Pain. 1998; 74: 61–66.

    PubMed  CAS  Google Scholar 

  146. Derbyshire SWG, Jones AKP. Cerebral responses to a continual tonic pain stimulus measured using positron emission tomography. Pain. 1998; 76: 127–135.

    PubMed  CAS  Google Scholar 

  147. Svennson P, Jensen TS, et al. Cerebral blood-flow changes evoked by two levels of painful heat stimulation: a positron emission tomography study in humans. Eur J Pain. 1998; 2: 95–107.

    Google Scholar 

  148. Rainville P, Duncan GH, Price DD, et al. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science. 1997; 277: 968–971.

    PubMed  CAS  Google Scholar 

  149. Casey KL, Minoshima S, Morrow TJ, Koeppe RA. Comparison of human cerebral activation patterns during cutaneous warmth, heat pain, and deep cold pain. J Neurophysiol (Bethesda). 1996; 76: 571–581.

    CAS  Google Scholar 

  150. Paulson PE, Minoshima S, Morrow TJ, Casey KL. Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain. 1998; 76: 223–229.

    PubMed  CAS  Google Scholar 

  151. Derbyshire SVG, Jones AKP, Gyulai F, Clark S, Townsend D, Firestone LL. Pain processing during three levels of noxious stimulation produces differential patterns of central activity. Pain. 1997; 73: 431–445.

    PubMed  CAS  Google Scholar 

  152. Svennson P, Minsohima S, Beydoun A, et al. Cerebral processing of acute skin and muscle pain in humans. J Neurophysiol. 1997; 78: 450–460.

    Google Scholar 

  153. Xu X, Fukuyama H, Yazawa S, et al. Functional localization of pain perception in the human brain studied by PET. Neuroreport. 1997; 8: 555–559.

    PubMed  CAS  Google Scholar 

  154. Vogt BA, Derbyshire S, Jones AKP. Pain processing in four regions of human cingulate cortex localized with co-registered PET and MR imaging. Eur J Neurosci. 1996; 8: 1461 1473.

    Google Scholar 

  155. Derbyshire SWG, Jones AKP, Devani P, et al. Cerebral responses to pain in patients with atypical facial pain measured by positron emission tomography. J Neurol Neurosurg Psychiatry. 1994; 57: 1166–1172.

    PubMed  CAS  Google Scholar 

  156. Coghill RC, Talbot JD, Evans AC, et al. Distributed processing of pain and vibration by the human brain. J Neurosci. 1994; 14: 4095–4108.

    PubMed  CAS  Google Scholar 

  157. Talbot JD, Marrett S, Evans AC, Meyer E, Bushnell MC, Duncan GH. Multiple representations of pain in human cerebral cortex [see comments]. Science. 1991; 251: 1355–1358.

    PubMed  CAS  Google Scholar 

  158. Jones AK, Brown WD, Friston KJ, Qi LY, Frackowiak RS. Cortical and subcortical localization of response to pain in man using positron emission tomography. Proc Roy Soc Lond. Series B: Biol Sci. 1991; 244: 39–44.

    CAS  Google Scholar 

  159. Derbyshire SWG, Jones AKP, Collins M, et al. Cerebral responses to pain in patients suffering acute post dental extraction pain measured by positron emission tomography (PET). Eur J Pain. 1999; 3: 103–113.

    PubMed  Google Scholar 

  160. Rosen SD, Paulesu E, Jones T. Central nervous pathways mediating angina pectoris. Lancet. 1994; 344: 147–150.

    PubMed  CAS  Google Scholar 

  161. Silverman DHS, Munakata JA, Enne H, et al. Regional cerebral activity in normal and pathologic perception of visceral pain. Gastroenterology. 1997; 112: 64–72.

    PubMed  CAS  Google Scholar 

  162. Aziz D, Andersson JLR, Valind S, et al. Identification of human brain loci processing esophageal sensation using positron emission tomography. Gastroenterology. 1997; 13: 50–59.

    Google Scholar 

  163. May A, Bahra A, Buchel C, Frackowiak RSJ, Goadsby PJ. Hypothalamic activation in cluster headache attacks. Lancet (North American Edition). 1998; 352: 275–278.

    CAS  Google Scholar 

  164. Hsieh J-C, Hannerz J, Ingvar M. Right-lateralised central processing for pain of nitroglycerin-induced cluster headache. Pain. 1996; 67: 59–68.

    PubMed  CAS  Google Scholar 

  165. Weiller C, May A, Limmroth V, et al. Brain stem activation in spontaneous human migraine attacks. Nat Med. 1995; 1: 658–660.

    PubMed  CAS  Google Scholar 

  166. Hsieh J-C, Belfrage M, Stone-Elander S, Hansson P, Ingvar M. Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain. 1995; 63: 225–236.

    PubMed  CAS  Google Scholar 

  167. Drossman DA, Whitehead WE, Camilleri M. Irritable bowel syndrome: a technical review for practice guideline development. Gastroenterology. 1997; 112: 2120–2137.

    PubMed  CAS  Google Scholar 

  168. Mayer EA, Silverman DHS. Gastrointestinal and genitourinary pain. In: Joint/Muscle and Visceral Pain: Basic Mechanisms with Implications for Assessment and Management. Seattle: IASP Press; 1996; 361–368.

    Google Scholar 

  169. Mayer EA, Naliboff B, Munakata J, Silverman DHS. Brain-gut mechanisms of visceral sensitivity. In: Corazziari E, ed. NeuroGastroenterology. New York: Walter de Gruyler and Co.; 1996; 17–31.

    Google Scholar 

  170. Mertz H, Morgan V, Tanner G, et al. Regional cerebral activation in irritable bowel syndrome and control subjects with painful and nonpainful rectal distention. Gastroenterology. 2000; 118: 842–848.

    PubMed  CAS  Google Scholar 

  171. Jones AKP, Derbyshire SWG. Positron emission tomography as a tool for understanding the cerebral processing of pain. In: Boivie HP, Lindblom U, eds. Touch, Temperature, and Pain in Health and Disease: Mechanisms and Assessments. Progress in Pain Research and Management, Seattle: IASP Press; 1994; 491–520.

    Google Scholar 

  172. Jones AKP, Qi LY, Fujirawa T. In vivo distribution of opioid receptors in man in relation to the cortical projections of the medial and lateral pain systems measured with positron emission tomography. Neurosci Lett. 1991; 126: 25–28.

    PubMed  CAS  Google Scholar 

  173. Jones AKP, Friston KJ, Qi LY. Sites of action of morphine in the brain. Lancet. 1991; 338: 825.

    PubMed  CAS  Google Scholar 

  174. Davies HA. Anginal pain of esophageal origin: clinical presentation, prevalence, and prognosis. Am J Med. 1992;92:55–1OS.

    Google Scholar 

  175. Aisenberg J, Castell DO. Approach to the patient with unexplained chest pain. Mount Sinai J Med. 1994; 61: 476–483.

    CAS  Google Scholar 

  176. Lichtlen P, Bargheer RK, Wenzlaff P. Long-term prognosis of patients with anginalike chest pain and normal coronary angiographic findings. J Am Coll Cardiol. 1995; 25: 1013–1018.

    CAS  Google Scholar 

  177. Rosen SD, Paulesu E, Nihoyannopoulos P. Silent ischemia as a central problem: regional brain activation compared in silent and painful myocardial ischemia. Ann Intern Med. 1996; 124: 939–949.

    PubMed  CAS  Google Scholar 

  178. Drevets WC. Neuroimaging studies of mood disorders. Biol Psychiatry 2000; 48: 813–829.

    PubMed  CAS  Google Scholar 

  179. Drevets WC. Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Progr Brain Res. 2000; 126: 413–431.

    CAS  Google Scholar 

  180. Baxter LR Jr, Phelps ME, Mazziotta JC, et al. Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18. Arch Gen Psychiatry. 1985; 42 (5): 441–447.

    PubMed  Google Scholar 

  181. Buchsbaum MS, Wu J, DeLisi LE, et al. Frontal cortex and basal ganglia metabolic rates assessed by positron emission tomography with [18F] 2-deoxyglucose in affective illness. J Affect Disord. 1986; 10 (2): 137–152.

    PubMed  CAS  Google Scholar 

  182. Post RM, DeLisi LE, Holcomb HH, Uhde TW, Cohen R, Buchsbaum MS. Glucose utilization in the temporal cortex of affectively ill patients: positron emission tomography. Biol Psychiatry. 1987; 22 (5): 545–553.

    PubMed  CAS  Google Scholar 

  183. Baxter LR Jr, Schwartz JM, Phelps ME, et al. Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry. 1989; 46 (3): 243–250.

    PubMed  CAS  Google Scholar 

  184. Hurwitz TA, Clark C, Murphy E, Klonoff H, Martin WR, Pate BD. Regional cerebral glucose metabolism in major depressive disorder. Can J Psychiatry. 1990; 35 (8): 684–688.

    PubMed  CAS  Google Scholar 

  185. Martinot JL, Hardy P, Feline A, et al. Left prefrontal glucose hypometabolism in the depressed state: a confirmation. Am J Psychiatry. 1990; 147 (10): 1313–1317.

    PubMed  CAS  Google Scholar 

  186. Bench CJ, Friston KJ, Brown RG, Scott LC, Frackowiak RS, Dolan RJ. The anatomy of melancholia-focal abnormalities of cerebral blood flow in major depression. Psychol Med. 1992; 22 (3): 607–615.

    PubMed  CAS  Google Scholar 

  187. Biver F, Goldman S, Delvenne V, et al. Frontal and parietal metabolic disturbances in unipolar depression. Biol Psychiatry. 1994; 36 (6): 381–388.

    PubMed  CAS  Google Scholar 

  188. Drevets WC, Price JL, Simpson JR Jr, et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature. 1997; 386 (6627): 824–827.

    PubMed  CAS  Google Scholar 

  189. Dolan RJ, Bench CJ, Brown RG, Scott LC, Friston KJ, Frackowiak RS. Regional cerebral blood flow abnormalities in depressed patients with cognitive impairment. JNeurol Neurosurg Psychiatry. 1992; 55 (9): 768–773.

    CAS  Google Scholar 

  190. Drevets WC, Videen TO, Price JL, Preskorn SH, Carmichael ST, Raichle ME. A functional anatomical study of unipolar depression. J Neurosci. 1992; 12 (9): 3628–3641.

    PubMed  CAS  Google Scholar 

  191. Bench CJ, Friston KJ, Brown RG, Frackowiak RS, Dolan RJ. Regional cerebral blood flow in depression measured by positron emission tomography: the relationship with clinical dimensions. Psychol Med. 1993; 23 (3): 579–590.

    PubMed  CAS  Google Scholar 

  192. Mayberg HS, Lewis PJ, Regenold W, Wagner HN Jr. Paralimbic hypoperfusion in unipolar depression. J Nucl Med. 1994; 35 (6): 929–934.

    PubMed  CAS  Google Scholar 

  193. Mayberg HS, Starkstein SE, Sadzot B, et al. Selective hypometabolism in the inferior frontal lobe in depressed patients with Parkinson’s disease. Ann Neurol. 1990; 28 (1): 57–64.

    PubMed  CAS  Google Scholar 

  194. Mayberg HS, Starkstein SE, Peyser CE, Brandt J, Dannals RF, Folstein SE. Paralimbic frontal lobe hypometabolism in depression associated with Huntington’s disease. Neurology. 1992; 42 (9): 1791–1797.

    PubMed  CAS  Google Scholar 

  195. Bromfield EB, Altshuler L, Leiderman DB, et al. Cerebral metabolism and depression in patients with complex partial seizures. Arch Neurol. 1992; 49 (6): 617–623.

    PubMed  CAS  Google Scholar 

  196. Cohen RM, Gross M, Nordahl TE, et al. Preliminary data on the metabolic brain pattern of patients with winter seasonal affective disorder. Arch Gen Psychiatry. 1992; 49 (7): 545–552.

    PubMed  CAS  Google Scholar 

  197. Goyer PF, Schulz PM, Semple WE, et al. Cerebral glucose metabolism in patients with summer seasonal affective disorder. Neuropsychopharmacology. 1992; 7 (3): 233–240.

    PubMed  CAS  Google Scholar 

  198. Staley JK, Malison RT, Innis RB. Imaging of the serotonergic system: interactions of neuroanatomical and functional abnormalities of depression. Biol Psychiatry. 1998; 44 (7): 534–549.

    PubMed  CAS  Google Scholar 

  199. Kennedy SH, Javanmard M, Vaccarino FJ. A review of functional neuroimaging in mood disorders: positron emission tomography and depression. Can J Psychiatry. 1997; 42 (5): 467–475.

    PubMed  CAS  Google Scholar 

  200. Videbech P. PET measurements of brain glucose metabolism and blood flow in major depressive disorder: a critical review. Acta Psychiatr Scand. 2000; 101 (1): 11–20.

    PubMed  CAS  Google Scholar 

  201. Fowler JS, Volkow ND, Wang GJ, et al. Inhibition of monoamine oxidase B in the brains of smokers. Nature. 1996; 379: 733–736.

    PubMed  CAS  Google Scholar 

  202. Fowler JS, Volkow ND, Wang GJ, et al. Neuropharmacological actions of cigarette smoke: brain monoamine oxidase B (MAO B) inhibition. JAddict Dis. 1998; 17: 23–34.

    CAS  Google Scholar 

  203. Grafton ST. PET: activation of cerebral blood flow and glucose metabolism. Adv Neurol. 2000; 83: 87–103.

    PubMed  CAS  Google Scholar 

  204. Baxter LR, Phelps ME, Mazziotta JC, et al. Local cerebral glucose metabolic rates in obsessive-compulsive disorder-a comparison with rates in unipolar depression and in normal control subjects. Arch Gen Psychiatr. 1987; 44: 211–218.

    PubMed  Google Scholar 

  205. Nordahl TE, Benkelfat C, Semple WE, et al. Cerebral glucose metabolic rates in obsessive-compulsive disorder. Neuropsychopharmacol. 1989; 2: 23–28.

    CAS  Google Scholar 

  206. Perani D, Colombo C, Bressi S, et al. [18F] FDG-PET study in obsessive-compulsive disorder: a clinical/metabolic correlation study after treatment. Br J Psychiatr. 1995; 166: 244–250.

    CAS  Google Scholar 

  207. Swedo S, Schapiro MG, Grady CL, et al. Cerebral glucose metabolism in childhood onset obsessive-compulsive disorder. Arch Gen Psychiatr. 1989; 46: 518–523.

    PubMed  CAS  Google Scholar 

  208. Rauch SL, Jenicke MA, Alpert NM, et al. Regional cerebral blood flow measured during symptom provocation in obsessive-compulsive disorder using oxyen-15-labeled carbon dioxide and positron emission tomography. Arch Gen Psychiatr 1994; 51: 62–70.

    PubMed  CAS  Google Scholar 

  209. Baxter LR, Schwartz JM, Bergman KS, et al. Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive-compulsive disorder. Arch Gen Psychiatry. 1992; 49: 681–689.

    PubMed  CAS  Google Scholar 

  210. Modell JG, Mountz JM, Curtis GC, et al. Neurophysiologic dysfunction in basal ganglia/limbic striatal and thalamocortical circuits as a pathogenetic mechanism of obsessive-compulsive disorder. J Neuropsychiatr Clin Neurosci. 1989; 1: 27–36.

    CAS  Google Scholar 

  211. Alexander GE, Delong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci. 1986; 9: 357–381.

    PubMed  CAS  Google Scholar 

  212. Baxter LR, Schwartz JM, Mazziotta JC, et al. Cerebral glucose metabolic rates in non-depressed obsessive-compulsives. Am J Psychiatr. 1988; 145: 1560–1563.

    PubMed  Google Scholar 

  213. Sawle GV, Hymas NF, Lees AJ, et al. Obsessional slowness: functional studies with positron emission tomography. Brain. 1991; 114: 2191–2202.

    PubMed  Google Scholar 

  214. Saxena S, Brody AL, Ho ML, et al. Cerebral metabolism in major depression and obsessive-compulsive disorder occurring separately and concurrently Biol Psychiatr. 2001; 50: 159–170.

    CAS  Google Scholar 

  215. Saxena S, Brody AL, Maidment KM, et al. Localized orbitofrontal and subcortical metabolic changes and predictors of response to paroxetine treatment in obsessive-compulsive disorder. Neuropsychopharmacol. 1999; 21: 683–693.

    CAS  Google Scholar 

  216. Tarazi FI, Florijn WJ, Creese I. Differential regulation of dopamine receptors after chronic typical and atypical antipsychotic drug treatment. Neuroscience. 1997; 78: 985–96.

    PubMed  CAS  Google Scholar 

  217. Hietala J, Syvalahti E, Vilkman H, Vuorio K, Rakkolainen V, et al. Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia. Schizophr Res. 1997; 35: 41–50.

    Google Scholar 

  218. Lewis R, Kapur S, Jones C, DaSilva J, Brown GM, et al. Serotonin 5-HT2 receptors in schizophrenia: a PET study using [18F] setoperone in neuroleptic-naive patients and normal subjects. Am J Psychiatry. 1999; 156: 72–78.

    PubMed  CAS  Google Scholar 

  219. Smith GS, Price JC, Lopresti BJ, et al. Test-retest variability of serotonin 5-HT2A receptor binding measured with positron emission tomography and [18F] altanserin in the human brain. Synapse. 1998; 30: 380–392.

    PubMed  CAS  Google Scholar 

  220. Gunn RN, Lammertsma AA, Grasby PM. Quantitative analysis of [carbonyl-(11)C]WAY-100635 PET studies. Nucl Med Biol. 2000; 27: 477–482.

    PubMed  CAS  Google Scholar 

  221. Passchier J, van Waarde A, Pieterman RM, et al. Quantitative imaging of 5-HT(1A) receptor binding in healthy volunteers with [(18)f]p-MPPF. Nucl Med Biol. 2000; 27: 473–476.

    PubMed  CAS  Google Scholar 

  222. Adams KM, Gilman S, Koeppe RA, et al. Neuropsychological deficits are correlated with frontal hypometabolism in positron emission tomography studies of older alcoholic patients. Alcohol Clin Exp Res. 1993; 17: 205–210.

    PubMed  CAS  Google Scholar 

  223. Dao-Castellana MH, Samson Y, Legault F, et al. Frontal dysfunction in neurologically normal chronic alcoholic subjects: metabolic and neuropsychological findings. Psychol Med. 1998; 28: 1039–1048.

    PubMed  CAS  Google Scholar 

  224. Volkow ND, Wang GJ, Hitzemann R, et al. Recovery of brain glucose metabolism in detoxified alcoholics. Am J Psychiatry 1994; 151: 178–183.

    PubMed  CAS  Google Scholar 

  225. Johnson-Greene D, Adams KM, Gilman S, et al. Effects of abstinence and relapse upon neuropsychological function and cerebral glucose metabolism in severe chronic alcoholism. J Clin Exp Neuropsychol. 1997; 19: 378–385.

    PubMed  CAS  Google Scholar 

  226. Rodgman A, Smith CJ, Perfetti TA. The composition of cigarette smoke: a retrospective, with emphasis on polycyclic components. Hum Exp Toxicol. 2000; 19: 573–595.

    PubMed  CAS  Google Scholar 

  227. Fowler JS, Volkow ND, Wang GJ, et al. Brain monoamine oxidase A inhibition in cigarette smokers. PNAS. 1996; 93: 14065–14069.

    PubMed  CAS  Google Scholar 

  228. Volkow ND, Fowler JS, Logan J, et al. Carbon-11-cocaine binding compared at subpharmacological and pharmacological doses: a PET study. J Nucl Med. 1995; 36: 1289–1297.

    PubMed  CAS  Google Scholar 

  229. Volkow ND, Wang GJ, Fischman MW, et al. Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature. 1997; 386: 827–830.

    PubMed  CAS  Google Scholar 

  230. Logan J, Volkow ND, Fowler JS, et al. Concentration and occupancy of dopamine transporters in cocaine abusers with [11C]cocaine and PET. Synapse 1997; 27: 347–356.

    PubMed  CAS  Google Scholar 

  231. Volkow ND, Wang GJ, Fowler JS, et al. Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature. 1997; 386: 830–833.

    PubMed  CAS  Google Scholar 

  232. Zuddas A, Ancilletta B, Muglia P, Cianchetti C. Attention-deficit/hyperactivity disorder: a neuropsychiatric disorder with childhood onset. Eur J Paediatr Neural 2000; 4: 53–62.

    CAS  Google Scholar 

  233. Sagvolden T, Sergeant JA. Attention deficit/hyperactivity disorder-from brain dysfunctions to behaviour. Behav Brain Res. 1998; 94: 1–10.

    PubMed  CAS  Google Scholar 

  234. Fowler JS, Volkow ND. PET imaging studies in drug abuse. J Toxicol Clin Toxicol. 1998; 36: 163–174.

    PubMed  CAS  Google Scholar 

  235. Volkow ND, Wang G, Fowler JS, et al. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci. 2001;21: RC121.

    Google Scholar 

  236. Seiden LS, Sabol KE. Methamphetamine and methylenedioxymethamphetamine neurotoxicity: possible mechanisms of cell destruction. NIDA Res Monogr. 1996; 163: 25 1276.

    Google Scholar 

  237. Wilson JM, Kalasinsky KS, Levey AI, et al. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med. 1996; 2: 699–703.

    PubMed  CAS  Google Scholar 

  238. Volkow ND, Chang L, Wang GJ, et al. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am i Psychiatry. 2001; 158: 377–382.

    CAS  Google Scholar 

  239. McCann UD, Wong DF, Yokoi F, et al. Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428. J Neurosci. 1998; 18: 8417–8422.

    PubMed  CAS  Google Scholar 

  240. Volkow ND, Chang L, Wang GJ, et al. Higher cortical and lower subcortical metabolism in detoxified methamphetamine abusers. Am J Psychiatry. 2001; 158: 383–389.

    PubMed  CAS  Google Scholar 

  241. Langston JW. MPTP neurotoxicity: an overview and characterization of phases of toxicity. Life Sci. 1985; 36: 201–206.

    PubMed  CAS  Google Scholar 

  242. Snyder S, D’Amato R. MPTP: a neurotoxin relevant to the pathophysiology of parkin-son’s disease. Neurology. 1986; 36: 250–258.

    PubMed  CAS  Google Scholar 

  243. Bergman H, Feingold A, Nini A, et al. Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci. 1998; 21: 32–38.

    PubMed  CAS  Google Scholar 

  244. Bankiewicz K, Oldfield E, Chiueh C, et al. Hemiparkinsonism in monkeys after unilateral internal carotid artery infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Life Sci. 1986; 39: 7–16.

    PubMed  CAS  Google Scholar 

  245. Melega WP, Raleigh MJ, Stout DB, et al. Longitudinal behavioral and 6-[18F]Fluoro-LDOPA-PET assessment in MPTP-hemiparkinsonian monkeys. Exp Neurol. 1996; 141: 318–329.

    PubMed  CAS  Google Scholar 

  246. Yee RE, Huang SC, Stout DB, et al. Nigrostriatal reduction of aromatic L-amino acid decarboxylase activity in MPTP-treated squirrel monkeys: in vivo and in vitro investigations. J Neurochem. 2000; 74: 1147–1157.

    PubMed  CAS  Google Scholar 

  247. Bankiewicz KS, Eberling JL, Kohutnicka M, et al. Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol. 2000; 164: 2–14.

    PubMed  CAS  Google Scholar 

  248. Melega WP, Raleigh MJ, Stout DB, et al. Recovery of striatal dopamine function after acute amphetamine-and methamphetamine-induced neurotoxicity in the vervet monkey. Brain Res 1997; 766: 113–120.

    PubMed  CAS  Google Scholar 

  249. Kleven MS, Woolverton WL, Seiden LS. Lack of long-term monoamine depletions following repeated or continuous exposure to cocaine. Brain Res Bull. 1988; 21: 233–237.

    PubMed  CAS  Google Scholar 

  250. Melega WP, Lacan G, Desalles AA, Phelps ME. Long-term methamphetamine-induced decreases of [(11)C]WIN 35,428 binding in striatum are reduced by GDNF: PET studies in the vervet monkey. Synapse. 2000; 35: 243–249.

    PubMed  CAS  Google Scholar 

  251. Weber S, Terstegge A, Herzog H, et al. The design of an animal PET: flexible geometry for achieving optimal spatial resolution or high sensitivity. IEEE Trans Med Imag. 1997; 16: 684–689.

    CAS  Google Scholar 

  252. Pichler B, Lorenz E, Mirzoyan R, et al. [Readout of lutetium oxyorthosilicate crystals with avalanche photodiodes for high resolution positron emission tomography]. Biomed Tech (Berl). 1997; 42: 37–38.

    Google Scholar 

  253. Chatziioannou AF, Cherry SR, Shao Y, et al. Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med. 1999; 40: 1164–1175.

    PubMed  CAS  Google Scholar 

  254. Qi J, Leahy RM, Cherry SR, Chatziioannou A, Farquhar TH. High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. Phys Med Biol. 1998; 43: 1001–1013.

    PubMed  CAS  Google Scholar 

  255. Chatziioannou A, Qi J, Moore A, et al. Comparison of 3-D maximum a posteriori and filtered backprojection algorithms for high-resolution animal imaging with microPET. IEEE Trans Med Imag. 2000; 19: 507–512.

    CAS  Google Scholar 

  256. Halldin C, Foged C, Chou YH, et al. Carbon-ll-NNC 112: a radioligand for PET examination of striatal and neocortical D1-dopamine receptors. J Nucl Med. 1998; 39: 2061–2068.

    PubMed  CAS  Google Scholar 

  257. Breier A, Su TP, Saunders R, et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. PNAS. 1997; 94: 2569–2574.

    PubMed  CAS  Google Scholar 

  258. Parsey RV, Kegeles LS, Hwang DR, et al. In vivo quantification of brain serotonin transporters in humans using [11C]McN 5652. J Nucl Med. 2000; 41: 1465–1477.

    PubMed  CAS  Google Scholar 

  259. Ryvlin P, Bouvard S, Le Bars D, et al. Clinical utility of flumazenil-PET versus [18F]fluorodeoxyglucose-PET and MRI in refractory partial epilepsy. A prospective study in 100 patients. Brain. 1998; 121: 2067–2081.

    PubMed  Google Scholar 

  260. Fowler JS, Volkow ND, Wang GJ, et al. Age-related increases in brain monoamine oxidase B in living healthy human subjects. Neurobiol Aging. 1997; 18: 431–435.

    PubMed  CAS  Google Scholar 

  261. Kazumata K, Dhawan V, Chaly T, et al. Dopamine transporter imaging with fluorine18-FPCIT and PET. J Nucl Med. 1998; 39: 1521–1530.

    PubMed  CAS  Google Scholar 

  262. Plenevaux A, Lemaire C, Aerts J, et al. [(18)F]p-MPPF: A radiolabeled antagonist for the study of 5-HT(1A) receptors with PET. Nucl Med Biol. 2000; 27: 467–471.

    PubMed  CAS  Google Scholar 

  263. Volkow ND, Chang L, Wang GJ, et al. Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. J Neurosci. 2001; 21: 9414–9418.

    PubMed  CAS  Google Scholar 

  264. Phelps ME. PET: The merging of biology and imaging into molecular imaging. J Nucl Med. 2000; 41: 661–681.

    PubMed  CAS  Google Scholar 

  265. Melega WP, Raleigh MJ, Stout PB, et al. Ethological and 6-[18F)fluoro-L-DOPA-PET profiles of long term vulnerability to chronic amphetamine. Behav Brain Res. 1997; 84: 259–268.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Silverman, D.H.S., Melega, W.P. (2004). Molecular Imaging of Biological Processes with PET: Evaluating Biologic Bases of Cerebral Function. In: PET. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22529-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22529-6_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2332-5

  • Online ISBN: 978-0-387-22529-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics