Skip to main content

Quantitative Assay Development for PET

  • Chapter
PET

Abstract

Positron emission tomography (PET) is a novel imaging tool that permits noninvasive visualization of molecular (biochemical) and biological events in a living subject. Due to its highly unique capabilities, it permits the development of quantitative assays that are currently not possible using most other approaches. For the purposes of this chapter,the process of developing a PET assay is defined as the collection of approaches for the quantitative estimation of a specific molecular (biochemical) and/or biological process in a living subject. The approaches are a toolbox of sorts that helps to integrate the data obtained from PET so that quantitative information about the process can be extracted from the data. The process of interest may be the expression of a specific gene, upregulation of a specific cell protein, concentration of receptors on the cell surface, decrease in regional perfusion, increase in glucose utilization, decrease in oxygen consumption, or a whole host of other possible events. The goal of a PET assay is to accurately quantitate one or more of the processes just mentioned through the use of novel positron-labeled probes (tracers) as well as appropriate image acquisition, data analysis, and data modeling methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoffman E, Phelps M. In: Phelps M, Mazziotta J, Schelbert H, eds. Positron Emission Tomography and Autoradiography. New York: Raven Press; 1986: 237–286.

    Google Scholar 

  2. Hoffman EJ, Huang S-C, Phelps ME. Quantitation in positron emission computed tomography: 1. Effects of object size. J Comput Assist Tomogr. 1979; 3: 299–308.

    PubMed  CAS  Google Scholar 

  3. Geworski L, Knoop BO, de Cabrejas ML, Knapp WH, Munz DL. Recovery correction for quantitation in emission tomography: a feasibility study. Eur J Nucl Med. 2000; 27: 161–169.

    PubMed  CAS  Google Scholar 

  4. Gambhir SS. Quantitation of the physical factors affecting the tracer kinetic modeling of cardiac positron emission tomography data. PhD dissertation, University of California, Los Angeles; 1990.

    Google Scholar 

  5. Coleman RE. Is quantitation necessary for oncological PET studies? Eur J Nucl Med Mol Imag. 2002; 29: 133–135.

    Google Scholar 

  6. Graham MM. Is quantitation necessary for oncological PET studies? Against. Eur J Nucl Med Mol Imag. 2002; 29: 135–138.

    Google Scholar 

  7. Schomburg A, Bender H, Reichel C, Sommer T, Ruhlman J, Kozak B, Biersack HJ. Standardized uptake values of fluorine-18 fluorodeoxyglucose: the value of different normalization procedures. Eur J Nucl Med. 1996; 23: 571–574.

    PubMed  CAS  Google Scholar 

  8. Kim CK, Gupta NC. Dependency of standardized uptake values of fluorine-18 fluorodeoxyglucose on body size: comparison of body surface area correction and lean body mass correction. Nucl Med Commun. 1996; 17: 890–894.

    PubMed  CAS  Google Scholar 

  9. Keyes JW Jr. SUV: standard uptake or silly useless value? J Nucl Med 1995; 36: 1836–1839.

    PubMed  Google Scholar 

  10. Sadato N, Tuschida T, Nakamura S, Wald A, Vematsu M, Takahasi N, Myashi N, Yonekura Y, Isii Y. Non-invasive estimation of the net influx constant using the standardized uptake value for quantification of FDG uptake of tumours. Eur J Nucl Med. 1998; 25: 559–564.

    PubMed  CAS  Google Scholar 

  11. Sheiner LB, Steimer JL. Pharmacokinetic/pharmacodynamic modeling in drug development. Annu Rev Pharmacol Toxicol. 2000; 40: 67–95.

    CAS  Google Scholar 

  12. Boxenbaum H. Pharmacokinetics: philosophy of modeling. Drug Metab Rev. 1992; 24 (1): 89–120.

    PubMed  CAS  Google Scholar 

  13. Mari A. Circulatory models of intact-body kinetics and their relationship with compartmental and non-compartmental analysis. J Theor Biol. 1993; 160: 509–531.

    PubMed  CAS  Google Scholar 

  14. Cobelli C, Saccomani MP. Accessible pool and system parameters: assumptions and models. J Parenter Enteral Nutr. 1991; 15: 455–50S.

    Google Scholar 

  15. Riviere JE. Basic principles and techniques of pharmacokinetic modeling. J Zoo Wildl Med. 1997; 28: 3–19.

    PubMed  CAS  Google Scholar 

  16. Jacquez J. Compartmental Analysis in Biololgy und Medicine. Ann Arbor: University of Michigan; 1985.

    Google Scholar 

  17. Godfrey K. Compartmental Models and Their Applications. London: Academic Press; 1983.

    Google Scholar 

  18. Luxon BA, Forker EL. Simulation and analysis of hepatic indicator dilution curves. Am J Physiol. 1982; 243: G76–89.

    PubMed  CAS  Google Scholar 

  19. Forker EL, Luxon BA. Lumpers vs. distributers. Hepatology. 1985; 5: 1236–1237.

    PubMed  CAS  Google Scholar 

  20. Meikle SR, Matthews JC, Brock CS, Wells P, Marte RJ, Cunningham VJ, Jones T, Price P. Pharmacokinetic assessment of novel anti-cancer drugs using spectral analysis and positron emission tomography: a feasibility study. Cancer Chemother Pharmacol. 1998; 42: 183–193.

    PubMed  CAS  Google Scholar 

  21. Zierler KL. Circulation times and the theory of indicator-dilution methods for determining blood flow and volume. In: Handbook of Physiology, Section 2: Circulation. Baltimore: American Physiological Society, Waverly Press; 1962: 585–615.

    Google Scholar 

  22. Bassingthwaighte JB, Holloway GA Jr. Estimation of blood flow with radioactive tracers. Semin Nucl Med. 1976; 6: 141–161.

    PubMed  CAS  Google Scholar 

  23. Carson ER, Cobelli C, Finkelstein L. Modeling and identification of metabolic systems. Am J Physiol. 1981; 240: R120–129.

    PubMed  CAS  Google Scholar 

  24. Burger C, Buck A. Tracer kinetic modelling of receptor data with mathematical metabolite correction. Eur J Nucl Med. 1996; 23: 539–545.

    PubMed  CAS  Google Scholar 

  25. Phelps ME, Huang SC, Hoffman EJ, Selin CE, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 1979; 6: 371–388.

    PubMed  CAS  Google Scholar 

  26. Ohtake T, Kosaka N, Watanabe T, Yokoyama I, Moritan T, Masuo M, Iizuka M, Kozeni K, Momose T, Oku S. Noninvasive method to obtain input function for measuring tissue glucose utilization of thoracic and abdominal organs. JNucl Med. 1991; 32: 1432–1438.

    CAS  Google Scholar 

  27. Germano G, Cher BC, Huang SC, Gambhir SS, Hoffman EJ, Phelps ME. Use of the abdominal aorta for arterial input function determination in hepatic and renal PET studies. J Nucl Med. 1992; 33: 613–620.

    PubMed  CAS  Google Scholar 

  28. Weinberg IN, Huang SC, Hoffman EJ, Araujo L, Nienaber C, Grover-McKay M, Dahlbom M, Schelbert H. Validation of PET-acquired input functions for cardiac studies. J Nucl Med. 1988; 29: 241–247.

    PubMed  CAS  Google Scholar 

  29. Hove JD, et al. Dual spillover problem in the myocardial septum with nitrogen-13-ammonia flow quantitation. J Nucl Med. 1998; 39: 591–598.

    PubMed  CAS  Google Scholar 

  30. Markham J, Schuster DP. Effects of nonideal input functions on PET measurements of pulmonary blood flow. J Appl Physiol. 1992; 72: 2495–2500.

    PubMed  CAS  Google Scholar 

  31. van den Hoff J, Burchert W, Muller-Schauenburg W, Meyer GJ, Hundeshagen H. Accurate local blood flow measurements with dynamic PET: fast determination of input function delay and dispersion by multilinear minimization. J Nucl Med. 1993; 34: 1770–1777.

    PubMed  Google Scholar 

  32. Herholz K, Lercher M, Wierhard K, Bauer B, Lenz O, Meiss WD. PET measurement of cerebral acetylcholine esterase activity without blood sampling. Eur J Nucl Med. 201; 28: 472–477.

    Google Scholar 

  33. Di Bella EV, Clackdoyle R, Gullberg GT. Blind estimation of compartmental model parameters. Phys Med Biol. 1999; 44: 765–780.

    PubMed  Google Scholar 

  34. Feng D, Wang X, Yan H. A computer simulation study on the input function sampling schedules in tracer kinetic modeling with positron emission tomography (PET). Comput Meth Progr Biomed. 1994; 45: 175–186.

    CAS  Google Scholar 

  35. Glatting G, Reske SN. Treatment of radioactive decay in pharmacokinetic modeling: influence on parameter estimation in cardiac 13N-PET. Med Phys. 1999; 26: 616–621.

    PubMed  CAS  Google Scholar 

  36. Wu HM, Huang SC, Choi Y, Hoh CK, Hawkins RA. A modeling method to improve quantitation of fluorodeoxyglucose uptake in heterogeneous tumor tissue. J Nucl Med. 1995; 36: 297–306.

    PubMed  CAS  Google Scholar 

  37. Wu HM, Hoh CK, Choi Y, Schelbert HR, Hawkins RA, Phelps ME, Huang SC. Factor analysis for extraction of blood time-activity curves in dynamic FDG-PET studies. J Nucl Med. 1995; 36: 1714–1722.

    PubMed  CAS  Google Scholar 

  38. Wu HM, Hoh CK, Buxton DB, Kuhle WG, Schelbert HR, Choi Y, Hawkins RA, Phelps ME, Huang SC. Quantification of myocardial blood flow using dynamic nitrogen-13ammonia PET studies and factor analysis of dynamic structures. J Nucl Med. 1995; 36: 2087–2093.

    PubMed  CAS  Google Scholar 

  39. Hermansen F, Bloomfield PM, Ashburner J, Camici PG, Lammertsma AA. Linear dimension reduction of sequences of medical images: II. Direct sum decomposition. Phys Med Biol. 1995; 40: 1921–1941.

    PubMed  CAS  Google Scholar 

  40. Hermansen F, Lammertsma AA. Linear dimension reduction of sequences of medical images: III. Factor analysis in signal space. Phys Med Biol. 1996; 41: 1469–1481.

    PubMed  CAS  Google Scholar 

  41. Ahn JY, Lee DS, Lee JS, Kim SK, Cheon GJ, Yeo JS, Shin SA, Chung JK, Lee MC. Quantification of regional myocardial blood flow using dynamic H2(15)0 PET and factor analysis. J Nucl Med. 2001; 42: 782–787.

    PubMed  CAS  Google Scholar 

  42. Kety SS. The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev. 1951; 3: 1–41.

    PubMed  CAS  Google Scholar 

  43. Renkin EM. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am JPhysiol. 1959; 197: 1205–1210.

    CAS  Google Scholar 

  44. Crone C. Permeability of capillaries in various organs as determined by use of the indicator diffusion method. Acta Physiol Scand. 1964; 58: 292–305.

    Google Scholar 

  45. DiStefano JJ 3rd, Landaw EM. Multiexponential, multicompartmental, and noncompartmental modeling. I. Methodological limitations and physiological interpretations. Am J Physiol. 1984; 246: R651–664.

    PubMed  Google Scholar 

  46. Landaw EM, DiStefano JJ 3rd. Multiexponential, multicompartmental, and noncompartmental modeling. II. Data analysis and statistical considerations. Am JPhysiol. 1984; 246: R665–677.

    Google Scholar 

  47. Hawkins RA, Phelps ME, Huang SC, Kuhl DE. Effect of ischemia on quantification of local cerebral glucose metabolic rate in man. J Cereb Blood Flow Metab. 1981; 1: 37–51.

    PubMed  CAS  Google Scholar 

  48. Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol. 1980; 238: E69–82.

    PubMed  CAS  Google Scholar 

  49. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M. The [14C]-deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977; 28: 897–916.

    PubMed  CAS  Google Scholar 

  50. Lund-Andersen H. Transport of glucose from blood to brain. Physiol Rev 1979; 59: 305–352.

    PubMed  CAS  Google Scholar 

  51. Spiegel MR. Theory and Problems of Laplace Transforms. Schaum Publishing Co: New York; 1965.

    Google Scholar 

  52. Krivokapich J, Huang SC, Phelps ME, MacDonald NS, Shine KI. Dependence of 13NH3 myocardial extraction and clearance on flow and metabolism. Am J Physiol. 1982; 242: H536–542.

    PubMed  CAS  Google Scholar 

  53. Bates DM, Watt GW. Nonlinear Regression Analysis and its Applications. New York: John Wiley und Sons; 1988.

    Google Scholar 

  54. Motulsky HJ, Ransnas LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J. 1987; 1: 365–374.

    PubMed  CAS  Google Scholar 

  55. Bard Y. Nonlinear Parameter Estimation. New York: Academic Press; 1974.

    Google Scholar 

  56. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983; 3: 1–7.

    PubMed  CAS  Google Scholar 

  57. Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab. 1985; 5: 584–590.

    PubMed  CAS  Google Scholar 

  58. Chen K, et al. Generalized linear least squares method for fast generation of myocardial blood flow parametric images with N-13 ammonia PET. IEEE Trans Med Imaging. 17: 236–243.

    Google Scholar 

  59. Feng D, Ho D, Lau KK, Siu WC. GLLS for optimally sampled continuous dynamic system modeling: theory and algorithm. Comput Meth Progr Biomed. 1999; 59: 31–43.

    CAS  Google Scholar 

  60. Cai W, Feng D, Fulton R, Siu WC. Generalized linear least squares algorithms for modeling glucose metabolism in the human brain with corrections for vascular effects. Comput Meth Progr Biomed. 2002; 68: 1–14.

    Google Scholar 

  61. Gambhir SS, Keppenne CL, Banerjee PK, Phelps ME. A new method to estimate parameters of linear compartmental models using artificial neural networks. Phys Med Biol. 1998; 43: 1659–1678.

    PubMed  CAS  Google Scholar 

  62. Golish SR, Hove JD, Schelbert HR, Gambhir SS. A fast nonlinear method for parametric imaging of myocardial perfusion by dynamic (13)N-ammonia PET. J Nucl Med. 2001; 42: 924–931.

    PubMed  CAS  Google Scholar 

  63. Carson R. Parameter estimation in positron emission tomography. In: Phelps M, Mazziotta J, Schelbert H, eds. Positron Emission Tomography and Autoradiograpy: Principles and Applications for the Brain er Heart. New York: Raven Press; 1986.

    Google Scholar 

  64. Cunningham VJ, Jones T. Spectral analysis of dynamic PET studies. J Cereb Blood Flow. Metab. 1993; 13: 15–23.

    PubMed  CAS  Google Scholar 

  65. Levy AV, Laska E, Brodie JD, Volkow ND, Wolf AP. The spectral signature method for the analysis of PET brain images. J Cereb Blood Flow Metab. 1991; 11: 103–113.

    Google Scholar 

  66. Turkheimer F, Moresco RM, Lucignani G, Sokoloff L, Fazio F, Schmidt K. The use of spectral analysis to determine regional cerebral glucose utilization with positron emission tomography and [18F] fluorodeoxyglucose: theory, implementation, and optimization procedures. J Cereb Blood Flow Metab. 1994; 14: 406–422.

    PubMed  CAS  Google Scholar 

  67. Meikle SR, Matthews JC, Cunningham VJ, Bailey DL, Livieratos L, Jones Price P. Parametric image reconstruction using spectral analysis of PET projection data. Phys Med. Biol. 1998; 43: 651–666.

    PubMed  CAS  Google Scholar 

  68. Turkheimer F, et al. Estimation of component and parameter distributions in spectral analysis. J Cereb Blood Flow Metab. 1998; 18: 1211–1222.

    PubMed  CAS  Google Scholar 

  69. Turkheimer F, Sokoloff L, Bertoldo A, Lucignani G, Reivich M, Jaggi JL, Schmidt K. Evaluation of compartmental and spectral analysis models of [18F] FDG kinetics for heart and brain studies with PET. IEEE Trans Biomed Eng. 1998; 45: 1429–1448.

    Google Scholar 

  70. Muzic RF Jr, Saidel GM, Zhu N, Nelson AD, Zheng L, Berridge MS. Iterative optimal design of PET experiments for estimating beta-adrenergic receptor concentration. Med Biol Eng Comput. 2000; 38: 593–602.

    PubMed  Google Scholar 

  71. Li X, Feng D, Chen K. Optimal image sampling schedule for both image-derived input and output functions in PET cardiac studies. IEEE Trans Med Imag. 2000; 19: 233–242.

    CAS  Google Scholar 

  72. Strul D, Bendriem B. Robustness of anatomically guided pixel-by-pixel algorithms for partial volume effect correction in positron emission tomography. J Cereb Blood Flow Metab. 1999; 19: 547–559.

    PubMed  CAS  Google Scholar 

  73. Huang SC, Carson RE, Phelps ME. Measurement of local blood flow and distribution volume with short-lived isotopes: a general input technique. J Cereb Blood Flow Metab. 1982; 2: 99–108.

    PubMed  CAS  Google Scholar 

  74. Holthoff VA, Koeppe RA, Frey KA, Paradise AH, Kuhl DE. Differentiation of radioligand delivery and binding in the brain: validation of a two-compartment model for [11C] flumazenil. J Cereb Blood Flow Metab. 1991; 11: 745–752.

    PubMed  CAS  Google Scholar 

  75. Barrett PH, Bell BM, Cobelli C, Golde H, Schumitzky A, Vicini P, Foster DM. SAAM II: Simulation, analysis, and modeling software for tracer and pharmacokinetic studies. Metabolism. 1998; 47: 484–492.

    PubMed  CAS  Google Scholar 

  76. Gambhir SS, Mahoney DK, Huang SC, Phelps ME. Symbolic interactive modeling package and learning environment (SIMPLE), a new easy method for compartmental modeling. Proceed Soc Comput Simul. 1996: 173–186.

    Google Scholar 

  77. Muzic RF Jr, Cornelius S. COMKAT: compartment model kinetic analysis tool. J Nucl Med. 2001; 42: 636–645.

    PubMed  CAS  Google Scholar 

  78. Dannals R, Ravert H, Wilson A. Chemistry of tracers for positron emission tomography. In Nuclear Imaging in Drug Discovery, Development, and Approval. Boston: Birkhauser; 1993: 56–74.

    Google Scholar 

  79. Frost JJ. Receptor-Binding Radio Tracers. Boca Raton, FL: CRC Press; 1982.

    Google Scholar 

  80. Hume SP, Gunn RN, Jones T. Pharmacological constraints associated with positron emission tomographic scanning of small laboratory animals. Eur J Nucl Med. 1998; 25: 173–176.

    PubMed  CAS  Google Scholar 

  81. Bachelard HS. Specificity and kinetic properties of monosaccharide uptake into guinea pig cerebral cortex in vitro. JNeurochem. 1971; 18: 213–222.

    CAS  Google Scholar 

  82. Binder T. Hexose translocation across the blood barrier interface: configurational aspects. J Neurochem. 1968; 15: 867–874.

    Google Scholar 

  83. Horton RW, Meldrum BS, Bachelard HS. Enzymic and cerebral metabolic effects of 2deoxy-D-glucose. J Neurochem. 1973; 21: 507–520.

    PubMed  CAS  Google Scholar 

  84. Sols A, Crane RK. Substrate specificity of brain hexokinase. J Biol Chem. 1954; 210: 581–595.

    PubMed  CAS  Google Scholar 

  85. Woodward G, Hudson M. The effect of 2-deoxy-D-glucose in glycolysis and respiration of tumor and normal tissues. Cancer Res. 1954; 14: 599–605.

    PubMed  CAS  Google Scholar 

  86. Kennedy C, Sakurada O, Shinohara M, Jehle J, Sokoloff L. Local cerebral glucose utilization in the normal conscious macaque monkey. Ann Neurol. 1978; 4: 293–301.

    PubMed  CAS  Google Scholar 

  87. Oldendorf WH. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am J Physiol. 1971; 221: 1629–1639.

    PubMed  CAS  Google Scholar 

  88. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977; 28: 897–916.

    PubMed  CAS  Google Scholar 

  89. Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP. Metabolic trapping as a principle of oradiopharmaceutical design: some factors resposible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose. J Nucl Med. 1978; 19: 1154–1161.

    PubMed  CAS  Google Scholar 

  90. Bidder T. Hexose translocation across the blood brain interface: configurational aspects. J Neurochem. 1968; 15: 867–874.

    PubMed  CAS  Google Scholar 

  91. MacGregor RR, Fowler JS, Wolf AP, Shine CY, Lade RE, Wan CN. A synthesis of 2-deoxy-D-[1–11C]glucose for regional metabolic studies: concise communication. J Nucl Med. 1981; 22: 800–803.

    PubMed  CAS  Google Scholar 

  92. Padgett HC, Barrio JR, MacDonald NS, Phelps ME. The unit operations approach applied to the synthesis of [1(-11)C]2-deoxy-D-glucose for routine clinical applications. J Nuel Med. 1982; 23: 739–744.

    Google Scholar 

  93. Raichle M, Welch M, Grubb R, Higgins C, Larson K. Measurement of regional substrate utilization rates by emission tomography. Science. 1978; 199: 986–987.

    PubMed  CAS  Google Scholar 

  94. Ido T, Wan CN, Fowler J, Wolf A. Fluorination with F2:a conveninent synthesis of 2deoxy-2-fluoro-D-glucose. J Organ Chem. 1978; 42: 2341–2342.

    Google Scholar 

  95. Bessel EM, Foster AB, Westwood JH. The use of deoxyfluoror-D-glucopyranoses and related compounds in a study of yeast hexokinase specificity. Biochem J. 1972; 128: 199–204.

    Google Scholar 

  96. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Caselia V, Fowler J, Hoffman E, Alavi A, Som P, Sokoloff L. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res. 1979; 44: 127–137.

    PubMed  CAS  Google Scholar 

  97. Gambhir SS. Quantitation of the physical factors affecting the tracer kinetic modeling of cardiac positron emission tomography data. Ph.D. Dissertation, University of California Los Angeles; 1990.

    Google Scholar 

  98. Gjedde A, Kuwabara H, Evans AC. Metabolic brain imaging. Direct regional measurement of transfer coefficients and lumped constant. Acta Radiol Suppl. 1990; 374: 117–121.

    PubMed  CAS  Google Scholar 

  99. Botker HE, Bottcher M, Schmitz O, Gee A, Hansen SB, Cold GE, Nielsen TT, Gjedde A. Glucose uptake and lumped constant variability in normal human hearts determined with [18F]fluorodeoxyglucose. J Nuel Cardio!. 1997; 4: 125–132.

    CAS  Google Scholar 

  100. Gambhir SS, Schwaiger M, Huang SC, Krivokapich J, Schelbert HR, Nienaber CA, Phelps ME. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med. 1989; 30: 359–366.

    PubMed  CAS  Google Scholar 

  101. Brooks RA. Alternative formula for glucose utilization using labeled deoxyglucose. JNucl Med. 1982; 23: 538–539.

    CAS  Google Scholar 

  102. Hutchins GD, Holden JE, Koeppe RA, Halama JR, Gatley SJ, Nickles RJ. Alternative approach to single-scan estimation of cerebral glucose metabolic rate using glucose analogs, with particular application to ischemia. J Cereb Blood Flow Metab. 1984; 4: 35–40.

    PubMed  CAS  Google Scholar 

  103. Graham MM, Peterson LM, Hayward RM. Comparison of simplified quantitative analyses of FDG uptake. Nucl Med Biol. 2000; 27: 647–655.

    PubMed  CAS  Google Scholar 

  104. Schelbert HR, Phelps ME, Hoffman EJ, Huang SC, Selin CE, Kuhl DE. Regional myocardial perfusion assessed with N-13 labeled ammonia and positron emission computerized axial tomography. Am J Cardiol. 1979; 43: 209–218.

    CAS  Google Scholar 

  105. Schelbert HR, Phelps ME, Huang SC, MacDonald NS, Hansen H, Selin C, Kuhl DE. N13 ammonia as an indicator of myocardial blood flow. Circulation. 1981; 63: 1259–1272.

    PubMed  CAS  Google Scholar 

  106. Smith GT. Quantification of myocardial blood flow. J Nucl Med. 1992; 33: 172.

    PubMed  CAS  Google Scholar 

  107. Huang S, Phelps M. In: Phelps M, Mazziotta J, Schelbert H, eds. Positron Emission Tomography and Autoradiograpy: Principles and Applications for the Brain und Heart. New York: Raven Press; 1986: 287–346.

    Google Scholar 

  108. Cooper AJ, Nieves E, Coleman AE, Filc-DeRicco S, Gelbard AS. Short-term metabolic fate of [13N]ammonia in rat liver in vivo. J Biol Chem. 1987; 262: 1073–1080.

    PubMed  CAS  Google Scholar 

  109. Rosenspire KC, Gelbard AS, Cooper AJ, Schmid FA, Roberts J. [13N]Ammonia and L[amide-13N]glutamine metabolism in glutaminase-sensitive and glutaminase-resistant murine tumors. Biochim Biophys Acta. 1985; 843: 37–48.

    PubMed  CAS  Google Scholar 

  110. Hutchins GD. Quantitative evaluation of myocardial blood flow with [13N] ammonia. Cardiology. 1997; 88: 106–115.

    PubMed  CAS  Google Scholar 

  111. Choi Y, Huang SC, Hawkins RA, Kim JY, Kim BT, Hoh CK, Chen K, Phelps ME, Schelbert HR. Quantification of myocardial blood flow using 13N-ammonia and PET: comparison of tracer models. J Nucl Med. 1999; 40: 1045–1055.

    PubMed  CAS  Google Scholar 

  112. Choi Y, Huang SC, Hawkins RA, Kuhle WG, Dahlbom M, Hoh CK, Czernin J, Phelps ME. A simplified method for quantification of myocardial blood flow using nitrogen13-ammonia and dynamic PET. J Nucl Med. 1993; 34: 488–497.

    PubMed  CAS  Google Scholar 

  113. DeGrado TR, Bergmann SR, Ng CK, Raffel DM. Tracer kinetic modeling in nuclear cardiology. J Nucl Cardiol. 2000; 7: 686–700.

    PubMed  CAS  Google Scholar 

  114. Meyer JH, Ichise M. Modeling of receptor ligand data in PET and SPECT imaging: a review of major approaches. J Neuroimaging. 2001; 11: 30–39.

    PubMed  CAS  Google Scholar 

  115. Morris ED, Alpert NM, Fischman AJ. Comparison of two compartmental models for describing receptor ligand kinetics and receptor availability in multiple injection PET studies. J Cereb Blood Flow Metab. 1996; 16: 841–853.

    PubMed  CAS  Google Scholar 

  116. Ichise M, Meyer JH, Yonekura Y. An introduction to PET and SPECT neuroreceptor quantification models. J Nucl Med. 2001; 42: 755–763.

    Google Scholar 

  117. Slifstein M, Laruelle M. Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. Nucl Med Biol. 2001; 28: 595–608.

    PubMed  CAS  Google Scholar 

  118. Arnett CD, Fowler JS, Wolf AP, Shiue C-Y, McPherson DW. [18F]-N-methylspiperone: the radioligand choice for PET studies of the dopamine receptor in human brain. Life Sci. 1985; 36: 1359–1366.

    PubMed  CAS  Google Scholar 

  119. Coenen HH, Laufer P, Stocklin G, Wienhard K, Pawlik G, Bocher-Schwarz HG, Heiss WD. 3-N-(2-[18F]fluoroethyl)spiperone: a novel ligand for cerebral dopamine receptor studies with PET. Life Sci. 1985; 40: 81–88.

    Google Scholar 

  120. Burns HD, Dannals RF, Langstrom B, Ravert HT, Zemyan SE, Duelfer T, Wong DF, Frost JJ, Kuhar MJ, Wagner HN. (3-N-[11Cmethyl)spiperone, a ligand binding to dopamine receptors: radiochemical synthesis and biodistribution studies in mice. J Nucl Med. 1984; 25: 1222–1227.

    PubMed  CAS  Google Scholar 

  121. Hall H, Kohler C, Gawell L, Farde L, Sedvall G. Raclopride, a new selective ligand for the dopamine-D2 receptors. Progr Neurophychopharm Biol Psychiatr. 1988; 12: 559–568.

    CAS  Google Scholar 

  122. Kessler RM, Ansari MS, Schmidt DE, de Paulis T, Clanton JA, Innis R, al-Tikriti M, Manning RG, Gillespie D. High affinity dopamine D2 receptor radioligands. 1. Regional rat brain distribution of iodinated benzamines. J Nucl Med. 1991; 32: 1593–1600.

    PubMed  CAS  Google Scholar 

  123. Laduron PM, Janssen PFM, Leysen JE. Spiperone: a ligand of choice for neuroleptic receptors. 2. Regional distribution and in vivo displacement of neuroleptic drugs. Biochem Pharmacol. 1978; 27: 317–321.

    PubMed  CAS  Google Scholar 

  124. Leysen JE, Gommeren W, Laduron PM. Spiperone: a ligand of choice for neuroleptic receptors. 1. Kinetics and characteristics of in vitro binding. Biochem Pharmacol. 1978; 27: 307–316.

    PubMed  CAS  Google Scholar 

  125. Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol. 1984; 15: 217–227.

    PubMed  CAS  Google Scholar 

  126. Persson A, Ehrin E, Eriksson L, Farde L, Hedstrom CG, Litton JE, Mindus P, Sedvall G. Imaging of [11C]-labelled Ro 15–1788 binding to benzodiazepine receptors in the human brain by positron emission tomography. J Psychiatr Res. 1985; 19: 609–622.

    PubMed  CAS  Google Scholar 

  127. Tewson TJ, Raichle ME, Welch MJ. Preliminary studies with [18F]haloperidol: a radioligand for in vivo studies of the dopamine receptors. Brain Res. 1980; 192: 291–295.

    PubMed  CAS  Google Scholar 

  128. Wagner HN Jr, Burns HD, Dannals RF, Wong DF, Langstrom B, Duelfer T, Frost JJ, Ravert HT, Links JM, Rosenbloom SB. Assessment of dopamine receptor densities in the human brain with carbon-I1-labeled N-methylspiperone. Ann Neurol. 1984; 15: S79–84.

    PubMed  Google Scholar 

  129. Wang WF, Ishiwata R, Nonaka M, Ishii S, Kiyosawa M, Shimada J, Suzuki F, Serda M. Carbon-11-labeled KF21213: a highly selective ligand for mapping CNS adenosine A(2A) receptors with positron emission tomography. Nucl Med Biol. 2000; 27: 541–546.

    PubMed  CAS  Google Scholar 

  130. Doudet DJ, Holden JE, Jivan S, McGeer E, Wyatt RJ. In vivo PET studies of the dopamine D2 receptors in rhesus monkeys with long-term MPTP-induced parkinsonism. Synapse. 2000; 38: 105–113.

    PubMed  CAS  Google Scholar 

  131. Andree B, Halldin C, Thorberg SO, Sandell J, Farde L. Use of PET and the radioligand [carbonyl-(11)C] WAY-100635 in psychotropic drug development. Nucl Med Biol. 2000; 27: 515–521.

    PubMed  CAS  Google Scholar 

  132. Gunn RN, Lammertsma AA, Grasby PM. Quantitative analysis of [carbonyl(11)C]WAY-100635 PET studies. Nucl Med Biol. 2000; 27: 477–482.

    PubMed  CAS  Google Scholar 

  133. Shiue C, Shiue GG, Benard F, Visonneau S, Santoli D, Alavi AA. N-(n-Benzylpiperidin4-yl)-2-[18F]fluorobenzamide: a potential ligand for PET imaging of breast cancer. Nucl Med Biol. 2000; 27: 763–767.

    PubMed  CAS  Google Scholar 

  134. Zubieta JK, Koeppe RA, Frey KA, Kilbourn MR, Mangner TJ, Foster NL, Kuhl DE. Assessment of muscarinic receptor concentrations in aging and Alzheimer disease with [11C]NMPB and PET. Synapse. 2001; 39: 275–287.

    PubMed  CAS  Google Scholar 

  135. Wilson AA, Ginovart N, Schmidt M, Meyer JH, Threlkeld PG, Houle S. Novel radio-tracers for imaging the serotonin transporter by positron emission tomography: synthesis, radiosynthesis, and in vitro and ex vivo evaluation of (11)C-labeled 2(phenylthio)araalkylamines. J Med Chem. 2000; 43: 3103–3110.

    PubMed  CAS  Google Scholar 

  136. Aston JA, Gunn RN, Worsley KJ, Ma Y, Evans AC, Dagher A.

    Google Scholar 

  137. Costes N, Merlet I, Zimmer L, Lavenne F, Cinotti L, Delforge J, Luxen A, Pujol JF, Le Bars D. A statistical method for the analysis of positron emission tomography neuroreceptor ligand data. Neuroimage. 2000; 12: 245–256.

    Google Scholar 

  138. Christian BT, Narayanan TK, Shi B, Mukherjee J. Quantitation of striatal and extrastriatal D-2 dopamine receptors using PET imaging of [(18)F]fallypride in nonhuman primates. Synapse. 2000; 38: 71–79.

    PubMed  CAS  Google Scholar 

  139. Watabe H, et al. Kinetic analysis of the 5-HT2A ligand [ii C]MDL 100,907. J Cereb Blood Flow Metab. 2000; 20: 899–909.

    PubMed  CAS  Google Scholar 

  140. Passchier J, van Waarde A. Visualisation of serotonin-1A (5-HT1A) receptors in the central nervous system. Eur J Nucl Med. 2001; 28: 113–129.

    PubMed  CAS  Google Scholar 

  141. Costes N, et al. Modeling [18 F]MPPF positron emission tomography kinetics for the determination of 5-hydroxytryptamine(lA) receptor concentration with multiinjection. J Cereb Blood Flow Metab. 2002; 22: 753–765.

    PubMed  CAS  Google Scholar 

  142. Lewin B. Genes VII. Oxford: Oxford Press; 2000.

    Google Scholar 

  143. Chalfie M, Tu Y, Euskirchen W, Ward W, Prasher DC. Green fluorescent protein as a marker for gene expression. Science. 1994; 263: 802–805.

    PubMed  CAS  Google Scholar 

  144. Chalfie M. Green fluorescent protein. Photochem Photobiol. 1995; 62: 651–656.

    PubMed  CAS  Google Scholar 

  145. Yang M, et al. Widespread skeletal metastatic potential of human lung cancer revealed by green fluorescent protein expression. Cancer Res. 1998; 58: 4217–4221.

    PubMed  CAS  Google Scholar 

  146. Chishima T, et al. Metastatic patterns of lung cancer visualized live and in process by green fluorescence protein expression. Clin Exper Met. 1997; 15: 547–552.

    CAS  Google Scholar 

  147. Bhaumik S, Gambhir SS. Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci. 2001.

    Google Scholar 

  148. Contag CH, Jenkins D, Contag PR, Negrin RS. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia. 2000; 2: 41–52.

    PubMed  CAS  Google Scholar 

  149. Weissleder R. Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer. 2002; 2: 11–18.

    PubMed  CAS  Google Scholar 

  150. Massoud T, Gambhir S. Molecular imaging in living subjects: Seeing fundamental biological processes in a new light. Genes Devel. 2003; 17: 545–580.

    PubMed  CAS  Google Scholar 

  151. Gambhir SS, Barrio JR, Herschman HR, Phelps ME. Imaging gene expression: principles and assays. J Nucl Cardio!. 1999; 6: 219–233.

    CAS  Google Scholar 

  152. Sundaresan G, Gambhir S. Radionuclide imaging of reporter gene expression. In: Toga WA, Mazziota JC, eds. Brain Mapping: The Methods. Amsterdam: Academic Press; 2002: 799–818.

    Google Scholar 

  153. Ray P, Bauer E, Iyer M, Barrio JR, Satyamurthy N, Phelps ME, Herschman HR, Gambhir SS. Monitoring gene therapy with reporter gene imaging. Semin Nucl Med. 2001.

    Google Scholar 

  154. Green LA, Yap CS, Nguyen K, Barrio JR, Namavari M, Satyamurthy N, Phelps ME, Sandgren EP, Herschman HR, Gambhir SS. Indirect monitoring of endogenous gene expression by Positron Emission Tomography (PET) imaging of reporter gene expression in transgenic mice. Molec Imag Biol. 2001; 4: 71–81.

    Google Scholar 

  155. Amer ES, Eriksson S. Mammalian deoxyribonucleoside kinases. Pharmacol Therapeut. 1995; 67: 155–186.

    Google Scholar 

  156. De Clercq E. Antivirals for the treatment of herpes virus infections. J Antimicrob Chemother. 1993; 32: 121–132.

    PubMed  Google Scholar 

  157. Elion GB. Acyclovir: discovery, mechanism of action, and selectivity. J Med Virol. 1993: 2–6.

    Google Scholar 

  158. Alrabiah FA, Sacks SL. New antiherpesvirus agents: their targets and therapeutic potential. Drugs. 1996; 52: 17–32.

    PubMed  CAS  Google Scholar 

  159. Iyer M, Barrio JR, Namavari M, Bauer E, Satyamurthy N, Nguyen K, Toyokuni T, Phelps ME, Herschman HR, Gambhir SS8- [18F] -Fluoropenciclovir: An improved reporter probe for imaging HSV1-tk reporter gene expression in vivo using positron emission tomography. J Nucl Med. 2001; 42: 96–105.

    PubMed  CAS  Google Scholar 

  160. Tjuvajev JG, Doubrovin M, Akhurst T, Cai S, Balatoni J, Alauddin MM, Finn R, Born-mann W, Thaler H, Conti PS, Blasberg RG. Comparison of radiolabeled nucleoside probes (FIAU, FHBG, and FHPG) for PET imaging of HSV1-tk gene expression. J Nucl Med. 2002; 43: 1072–1083.

    PubMed  Google Scholar 

  161. Gambhir SS, Barrio JR, Wu L, Iyer M, Namavari M, Satyamurthy N, Bauer E, Parrish C, MacLaren DC, Borghei AR, Green LA, Sharfstein S, Berk AJ, Cherry SR, Phelps ME, Herschman HR. Imaging of adenoviral directed herpes simplex virus type 1 thymidine kinase gene expression in mice with ganciclovir. J Nucl Med. 1998; 39: 2003–2011.

    PubMed  CAS  Google Scholar 

  162. Herz J, Gerard RD. Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol in normal mice. Proc Natl Acad Sci USA. 1993; 90: 2812–2816.

    PubMed  CAS  Google Scholar 

  163. Stratford-Perricaudet LD, Levrero M, Chasse J-F, Perricaudet M, Briand P. Evaluation of the transfer and expression in mice of an enzyme-encoding gene using a human adenovirus vector. Hum Gene Ther. 1990; 1: 241–256.

    PubMed  CAS  Google Scholar 

  164. Barrio BR, Namavari M, Phelps ME, Satyamurthy N. Elemental fluorine to 8-fluorpurines in one step. JAm Chem Soc. 1996; 118: 10408–10411.

    CAS  Google Scholar 

  165. Alauddin MM, Conti PS, Mazza SM, Hamzeh FM, Lever JR. Synthesis of 9-[(3-[18F]fluoro-l-hydroxy-2-propoxy)methyl]guanine ([18F]FHPG): A potential imaging agent of viral infection and gene therapy using PET. Nucl Med Biol. 1996; 23: 787–792.

    PubMed  CAS  Google Scholar 

  166. Bading JR, et al. Pharmacokinetics of F-18 fluorohydroxy-propoxymethylguanine (FHPG). J Nucl Med. 1997; 38: 43 P.

    Google Scholar 

  167. Alauddin MM, Conti PS. Synthesis and preliminary evaluation of 9-(4-[18F]-fluoro-3hydroxymethylbutyl)guanine ([18F]FHBG): a new potential imaging agent for viral infection and gene therapy using PET. Nucl Med Biol. 1998; 25: 175–180.

    PubMed  CAS  Google Scholar 

  168. Iyer M, et al. Comparison of FPCV, FHBG, and FIAU as reporter probes for imaging herpes simplex virus type 1 thymidine kinase reporter gene expression. J Nucl Med. 2000; 41: 80 P.

    Google Scholar 

  169. Tjuvajev JG, et al. Quantitative PET imaging of HSV1-TK gene expression with [I-124]FIAU. J Nuel Med. 1997; 38: 239 P.

    Google Scholar 

  170. Min J, Iyer M, Gambhir S. Comparison of FHBG and FIAU for Imaging HSV1-tk reporter gene expression: Adenoviral infection vs. stable transfection. J Nuel Med. 2002; 43: 275 P.

    Google Scholar 

  171. Blasberg R. Imaging gene expression and endogenous molecular processes: molecular imaging. J Cereb Blood Flow Metab. 2002; 22: 1157–1164.

    PubMed  CAS  Google Scholar 

  172. Qiao J, Doubrovin M, Sauter BV, Huang Y, Guo ZS, Balatoni J, Akhurst T, Blasberg RG, Tjuvajev JG, Chen SH, Woo SL. Tumor-specific transcriptional targeting of suicide gene therapy. Gene Ther. 2002; 9: 168–175.

    PubMed  CAS  Google Scholar 

  173. Ponomarev V, Doubrovin M, Lyddane C, Beresten T, Balatoni J, Bornman W, Finn R, Akhurst T, Larson S, Blasberg R, Sadelain M, Tjuvajev JG. Imaging TCR-dependent NFAT-mediated T-cell activation with positron emission tomography in vivo. Neoplasia. 2001; 3: 480–488.

    PubMed  CAS  Google Scholar 

  174. Tjuvajev J, Blasberg R, Luo X, Zheng LM, King I, Bermudes D.Salmonella-based tumor-

    Google Scholar 

  175. targeted cancer therapy: tumor amplified protein expression therapy (TAPET) for diagnostic imaging. J Contr Release. 2001;74:313–315.

    Google Scholar 

  176. Doubrovin M, Ponomarev V, Beresten T, Balatoni J, Bornmann W, Finn R, Humm J, Larson S, Sadelain M, Blasberg R, Gelovani Tjuvajev J. Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc Natl Acad Sci USA. 2001; 98: 9300–9305.

    PubMed  CAS  Google Scholar 

  177. Bennett JJ, Tjuvajev J, Johnson P, Doubrovin M, Akhurst T, Malholtra S, Hackman T, Balatoni J, Finn R, Larson SM, Federoff H, Blasberg R, Fong Y. Positron emission tomography imaging for herpes virus infection: Implications for oncolytic viral treatments of cancer. Natl Med. 2001; 7: 859–863.

    CAS  Google Scholar 

  178. Jacobs A, Tjuvajev JG, Dubrovin M, Akhurst T, Balatoni J, Beattie B, Joshi R, Finn R, Larson SM, Herrlinger U, Pechan PA, Chiocca EA, Breakefield XO, Blasberg RG. Positron emission tomography-based imaging of transgene expression mediated by replication-conditional, oncolytic herpes simplex virus type 1 mutant vectors in vivo. Cancer Res. 2001; 61: 2983–2995.

    PubMed  CAS  Google Scholar 

  179. Gambhir SS, Bauer E, Black ME, Liang Q, Kokoris MS, Barrio JR, Iyer M, Namavari M, Phelps ME, Herschman HR. A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci USA. 2000; 97: 2785–2790.

    PubMed  CAS  Google Scholar 

  180. Black ME, Newcomb TG, Wilson H-MP, Loeb LA. Creation of drug-specific hepes simplex virus type 1 thymidine kinase mutant for gene therapy. Proc Natl Acad Sci USA. 1996; 93: 3525–3529.

    PubMed  CAS  Google Scholar 

  181. Black ME, Kokoris SK, Sabo P. Herpes implex virus-1 thymidine kinase mutants created by semi-random sequence mutagenesis improve pro-drug mediated tumor cell killing. Cancer Res. 2001; 61: 3022–3026.

    PubMed  CAS  Google Scholar 

  182. Green LA, Gambhir SS, Srinivasan A, Banerjee PK, Hoh CK, Cherry SR, Sharfstein S, Barrio JR, Herschman HR, Phelps ME. Non-invasive methods for quantitating blood time-activity curves from FDG PET mice images. J Nucl Med. 1998; 39: 729–734.

    PubMed  CAS  Google Scholar 

  183. Green L, et al. Tracer kinetic modeling of FHBG in mice imaged with MicroPET for quantitation of reporter gene expression. J Nucl Med. 2000; 41: 58 P.

    Google Scholar 

  184. Yaghoubi S, Barrio JR, Dahlbom M, Iyer M, Namavari M, Satyamurthy N, Goldman R, Herschman HR, Phelps ME, Gambhir SSHuman pharmacokinetic and dosimetry studies of [18F]-FHBG: A reporter probe for imaging herpes simplex virus type I thymidine kinase (HSV1-tk) reporter gene expression. J Nucl Med. 2001; 42 (8): 1225–1234.

    PubMed  CAS  Google Scholar 

  185. Green L, Berenji B, Kuo J, Gambhir S. Simulation studies of assumptions of a three-compartment FHBG model for imaging reporter gene expression. J Nucl Med. 2001; 42: 100 P.

    Google Scholar 

  186. Gambhir SS, Barrio JR, Phelps ME, Iyer M, Namavari M, Satyamurthy N, Wu L, Green LA, Bauer E, MacLaren DC, Nguyen K, Berk AJ, Cherry SR, Herschman HR. Imaging adenoviral-directed reporter gene expression in living animals with Positron Emission Tomography. Proc Natl Acad Sci USA. 1999; 96: 2333–2338.

    PubMed  CAS  Google Scholar 

  187. Jacobs A, Voges J, Reszka R, Lercher M, Gossmann A, Kracht L, Kaestle C, Wagner R, Wienhard K, Heiss WD. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet. 2001; 358: 727–729.

    PubMed  CAS  Google Scholar 

  188. MacLaren DC, Gambhir SS, Satyamurthy N, Barrio JR, Sharfstein S, Toyokuni T, Wu L, Berk AJ, Cherry SR, Phelps ME, Herschman HR. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther. 1999; 6: 785–791.

    PubMed  CAS  Google Scholar 

  189. Haberkorn U. Gene therapy with sodium/iodide symporter in hepatocarcinoma. Exp Clin Endocrinol Diabetes. 2001; 109: 60–62.

    PubMed  CAS  Google Scholar 

  190. Haberkorn U, Henze M, Altmann A, Jiang S, Morr I, Mahmut M, Peschke P, Kubler W, Debus J, Eisenhut M. Transfer of the human Na1 symporter gene enhances iodide uptake in hepatoma cells. J Nucl Med. 2001; 42: 317–325.

    PubMed  CAS  Google Scholar 

  191. Chung JK. Sodium iodide symporter: its role in nuclear medicine. J Nucl Med. 2002; 43: 1188–1200.

    PubMed  CAS  Google Scholar 

  192. Cho JY, Shen DH, Yang W, Williams B, Buckwalter TL, La Perle KM, Hinkle G, Pozderac R, Kloos R, Nagaraja HN, Barth RF, Jhiang SM. In vivo imaging and radioiodine therapy following sodium iodide symporter gene transfer in animal model of intracerebral gliomas. Gene Ther. 2002; 9: 1139–1145.

    PubMed  CAS  Google Scholar 

  193. Petrich T, Helmeke HJ, Meyer GJ, Knapp WH, Potter E. Establishment of radioactive astatine and iodine uptake in cancer cell lines expressing the human sodium/iodide symporter. Eur J Nucl Med Mol Imag. 2002; 29: 842–854.

    CAS  Google Scholar 

  194. Rogers BE, Zinn KR, Buchsbaum DJ. Gene transfer strategies for improving radiolabeled peptide imaging and therapy. Q J Nucl Med. 2000; 44: 208–223.

    CAS  Google Scholar 

  195. Liang Q, et al. Noninvasive, repetitive, quantitative measurement of gene expression from a bicistronic message by positron emission tomography, following gene transfer with adenovirus. Mol Ther. 2002; 6: 73–82.

    PubMed  CAS  Google Scholar 

  196. Liang Q, et al. Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther. 2001; 8: 1490–1498.

    PubMed  CAS  Google Scholar 

  197. Le LQ, Kabarowski JH, Wong S, Nguyen K, Gambhir SS, Witte ON. Positron emission tomography imaging analysis of G2A as a negative modifier of lymphoid leukemogenesis initiated by the BCR-ABL oncogene. Cancer Cell. 2002; 1: 381–391.

    PubMed  CAS  Google Scholar 

  198. Yu Y, Annala AJ, Barrio JR, Toyokuni T, Satyamurthy N, Namavari M, Cherry SR, Phelps ME, Herschman HR, Gambhir SS. Quantification of target gene expression by imaging reporter gene expression in living animals. Nature Med. 2000; 6: 933–937.

    PubMed  CAS  Google Scholar 

  199. Yaghoubi SS, Wu L, Liang Q, Toyokuni T, Barrio JR, Namavari M, Satyamurthy N, Phelps ME, Herschman HR, Gambhir SS. Direct correlation between positron emission tomographic images of two reporter genes delivered by two distinct adenoviral vectors. Gene Ther. 2001; 8: 1072–1080.

    PubMed  CAS  Google Scholar 

  200. Sun X, Annala AJ, Yaghoubi SS, Barrio JR, Nguyen KN, Toyokuni T, Satyamurthy N, Namavari M, Phelps ME, Herschman HR, Gambhir SS. Quantitative imaging of gene induction in living animals. Gene Ther. 2001; 8: 1572–1579.

    PubMed  CAS  Google Scholar 

  201. Iyer M, Berenji M, Templeton NS, Gambhir S. Noninvasive imaging of cationic lipid mediated delivery of optical and PET reporter genes in living mice. Mol Ther. 2002; 6: 555–562.

    PubMed  CAS  Google Scholar 

  202. Hildebrandt I, Iyer M, Wagner E, Gambhir S. Optical imaging of transferrin targeted PEI/DNA complexes in living subjects. Gene Ther. 2003; 10: 758–764.

    PubMed  CAS  Google Scholar 

  203. Adams JY, Johnson M, Sato M, Berger F, Gambhir SS, Carey M, Iruela-Arispe ML, Wu L. Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nat Med. 2002; 8: 891–897.

    PubMed  CAS  Google Scholar 

  204. Iyer M, Wu L, Carey M, Wang Y, Smallwood A, Gambhir SS. Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. Proc Natl Acad Sci USA. 2001; 98: 14595–14600.

    PubMed  CAS  Google Scholar 

  205. Zhang L, Adams JY, Billick E, Ilagan R, Iyer M, Le K, Smallwood A, Gambhir SS, Carey M, Wu L. Molecular engineering of a two-step transcription amplification (TSTA) system for transgene delivery in prostate cancer. Mol Ther. 2002; 5: 223–232.

    PubMed  CAS  Google Scholar 

  206. Ray P, Bauer E, Iyer M, Barrio JR, Satyamurthy N, Phelps ME, Herschman HR, Gambhir SS. Monitoring gene therapy with reporter gene imaging. Semin Nucl Med. 2001; 31: 312–320.

    PubMed  CAS  Google Scholar 

  207. Ray P, Wu A, Gambhir SS. Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Cancer Res. 2003; 63: 1160–1165.

    PubMed  CAS  Google Scholar 

  208. Agrawal S, Iyer RP. Perspectives in antisense therapeutics. Pharmacol Therapeut. 1997; 76: 151–160.

    CAS  Google Scholar 

  209. Crooke ST, Lebleu B. Antisense Research and Applications. Boca Raton, FL: CRC Press; 1993.

    Google Scholar 

  210. Crooke S. Progress in antisense therapeutics discovery and development. Ciba Found Sympos 1997; 209: 158–168.

    CAS  Google Scholar 

  211. Wagner RW, Flanagan WM. Antisense technology and prospects for therapy of viral infections and cancer. Molec Med Today. 1997; 3: 31–38.

    CAS  Google Scholar 

  212. Hargrove JL, Hulsey MG, Schmidt FH, Beale EG. A computer program for modeling kinetics of gene expression. BioTechniques. 1990; 8: 654–660.

    PubMed  CAS  Google Scholar 

  213. Helene C, Toulme JJ. Control of gene expression by oligodeoxynucleotides covalently linked to intercalating agents and nucleic acid-cleaving reagents. In: Cohen JS, ed. Oligodeoxynucleotides. London: MacMillan; 1990: 137–166.

    Google Scholar 

  214. Goodchild J. Inhibition of gene expression by oligonucleotides. In: Cohen IS, ed. Oligonucleotides: Antisense Inhibitors for Gene Expression. London: MacMillan; 1990: 53–71.

    Google Scholar 

  215. Pan D, Gambhir SS, Toyokuni T, Iyer MR, Acharya N, Phelps ME, Barrio JR. Rapid synthesis of a 5’-fluorinated oligodeoxy-nucletoide: A model antisense probe for use in imaging with Positron Emission Tomography (PET). Bioorg Med Chem Ltr. 1998; 8: 1317–1320.

    CAS  Google Scholar 

  216. Wickstrom E. Oligodeoxynucleotide stability in subcellular extracts and culture media. J Biochem Biophys Meth. 1986; 13: 97–102.

    PubMed  CAS  Google Scholar 

  217. Matsukura M, Shinozuka K, Zon G. Phosphorothioate analogs of oligodeoxynucleotides: novel inhibitors of replication and cytopathic effects of human immunodeficiency virus (HIV). Proc Natl Acad Sci USA. 1978; 84: 7706–7710.

    Google Scholar 

  218. Murakami A, Blake K, Miller PS. Characterization of sequence-specific oligodeoxynucleoside methylphosphonates and their interaction with rabbit globin mRNA. Biochemistry. 1985; 24: 4041–4046.

    PubMed  CAS  Google Scholar 

  219. Good L, Nielsen PE. Progress in developing PNA as a gene-targeted drug. Antisense Nucl Acid Drug Devel. 1997; 7: 431–437.

    CAS  Google Scholar 

  220. Cotten M, Wagner E, Birnstiel M. Receptor-mediated transport of DNA into eukaryotic cells. Meth Enzymol. 1993; 217: 618–644.

    PubMed  CAS  Google Scholar 

  221. Loke SL, Stein CA, Zhang XH, Mori K, Nakanishi M, Subasinghe C, Cohen JS, Neckers LM. Characterization of oligonucleotide transport into living cells. Proc Natl Acad Sci USA. 1989; 86: 7595–7599.

    Google Scholar 

  222. Wu-Pong S, Weiss TL, Hunt AC. Antisense c-myc oligodeoxyribonucleotide cellular uptake. Pharm Res. 1992; 9: 1010–1017.

    PubMed  CAS  Google Scholar 

  223. Wu-Pong S, Weiss TL, Hunt AC. Antisense c-myc oligonucleotide cellular uptake and activity. Antisense Res Devel. 1994; 4: 155–163.

    CAS  Google Scholar 

  224. Stein CA, Cheng YC. Antisense oligonucleotides as therapeutic agents-Is the bullet really magical. Science. 1993; 261: 1004–1011.

    PubMed  CAS  Google Scholar 

  225. Zamecnik PC, Stephenson M. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci USA. 1978; 75: 280–284.

    PubMed  CAS  Google Scholar 

  226. Zamecnik PC, Goodchild J, Yaguchi Y, Sarin P. Inhibition of replication of expression of human T-cell lymphotropic virus type III in cultured cells by exogenous synthestic oligonucleotides completmentary to viral RNA. Proc Natl Acad Sci USA. 1986; 83: 4143–4146.

    PubMed  CAS  Google Scholar 

  227. Crooke ST. Progress in antisense therapeutics. Hematol Pathol. 1995; 9: 59–72.

    PubMed  CAS  Google Scholar 

  228. Phillips JA, Craig SJ, Bayley D, Christian RA, Geary R, Nicklin PL. Pharmacokinetics, metabolism, and elimination of a 20-mer phosphorothioate oligodeoxynucleotide (CGP 69846A) after intravenous and subcutaneous administration. Biochem Pharm. 1997; 54: 657–668.

    PubMed  CAS  Google Scholar 

  229. Dewanjee MK, Ghafouripour AK, Kapadvanjwala M, Dewanjee S, Serafini AN, Lopez DM, Sfakianakis GN. Noninvasive imaging of c-myc oncogene messenger RNA with indium-111-antisense probes in a mammary tumor-bearing mouse model. J Nucl Med. 1994; 35: 1054–1063.

    PubMed  CAS  Google Scholar 

  230. Hnatowich DJ, Winnard P Jr, Virzi F, Fogarasi M, Sano T, Smith CL, Cantor CR, Rusckowski M. Technetium-99m labeling of DNA oligonucleotides. J Nucl Med. 1995; 36: 2 306–2314.

    Google Scholar 

  231. Cammilleri S, Sangrajrang S, Perdereau B, Brixy F, Calvo F, Bazin H, Magdelenat H. Biodistribution of iodine-125 dyramine transforming growth factor alpha antisense oligonucleotide in athymic mice with a human mammary tumor xenograft following intratumoral injection. Euro J Nucl Med. 1996; 23: 448–452.

    CAS  Google Scholar 

  232. Tavitian B, Terrazzino S, Kuhnast B, Marzabal S, Stettler O, Dolle F, Deverre JR, Jobert A, Hinnen F, Bendriem B, Crouzel C, Di Giamberardino L. In vivo imaging of oligonucleotides with positron emission tomography. Nat Med. 1998; 4: 467–471.

    PubMed  CAS  Google Scholar 

  233. Lee HJ, Boado RJ, Braasch DA, Corey DR, Pardridge WM. Imaging gene expression in the brain in vivo in a transgenic mouse model of Huntington’s disease with an antisense radiopharmaceutical and drug-targeting technology. J Nucl Med. 2002; 43: 948–956.

    PubMed  CAS  Google Scholar 

  234. Tavitian B. In vivo antisense imaging. Q J Nucl Med. 2000; 44: 236–255.

    PubMed  CAS  Google Scholar 

  235. Hnatowich DJ. Antisense imaging: where are we now? Cancer Biother Radiopharm. 2000; 15: 447–457.

    PubMed  CAS  Google Scholar 

  236. Hnatowich DJ. Antisense and nuclear medicine. J Nucl Med. 1999; 40: 693–703.

    PubMed  CAS  Google Scholar 

  237. Puttaraju M, DiPasquale J, Baker CC, Mitchell LG, Garcia-Blanco MA. Messenger RNA repair and restoration of protein function by spliceosome-mediated RNA trans-splicing. Mol Ther. 2001; 4: 105–114.

    PubMed  CAS  Google Scholar 

  238. Mansfield SG, Kole J, Puttaraju M, Yang CC, Garcia-Blanco MA, Cohn JA, Mitchell LG. Repair of CFTR mRNA by spliceosome-mediated RNA trans-splicing. Gene Ther. 2000; 7: 1885–1895.

    PubMed  CAS  Google Scholar 

  239. Bhaumik S, Lewis X, Puttaraju M, Mitchell L, Gambhir S. Imaging mRNA levels in living animals through a novel RNA trans-splicing signal amplification approach. Malec Imag Biol. 2002; 4: 517.

    Google Scholar 

  240. Paulmurugan R, Umezawa Y, Gambhir SS. Noninvasive imaging of protein-protein interactions in living subjects using reporter protein complementation and reconstitution strategies. Proc Natl Acad Sci. USA. 2002; 99: 15608–15613.

    PubMed  CAS  Google Scholar 

  241. Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer. 2002; 2: 683–693.

    PubMed  CAS  Google Scholar 

  242. Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, Robertson JS, Howell RW, Wessels BW, Fisher DR, Weber DA, Brill AB. MIRD pamphlet no. 16: Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med. 1999; 40: 375–61S.

    Google Scholar 

  243. Bolch WE, Bouchet LG, Robertson JS, Wessels BW, Siegel JA, Howell RW, Erdi AK, Aydogan B, Costes S, Watson EE, Brill AB, Charkes ND, Fisher DR, Hays MT, Thomas SR. MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions—radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee. J Nucl Med. 1999; 40: 11S - 36S.

    PubMed  CAS  Google Scholar 

  244. Burns HD, Gibson RE, Dannals R, Siegl P. Nuclear Imaging in Drug Discovery, Development, and Approval. Boston: Birkhauser; 1993.

    Google Scholar 

  245. Cho A, et al. A pharmacokinetic study of phenylcyclohexyldiethylamine. An analog of phencyclidine. Drug Metab Dispos. 1993; 21: 125–132.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Gambhir, S.S. (2004). Quantitative Assay Development for PET. In: PET. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22529-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22529-6_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2332-5

  • Online ISBN: 978-0-387-22529-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics