Skip to main content

Radiation Therapy and Considerations for Internal Fixation Devices

  • Chapter
  • 1179 Accesses

Abstract

Malignant tumors of the lower oral cavity with infiltration of the mandible frequently require segmental bone resections. The resulting loss of continuity in the mandibular arch causes a significant functional and esthetic deficit. A decisive step in the improvement of quality of life in these patients was the development of alloplastic defect bridging devices. Various techniques and materials can be applied.1–8

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austermann K-H, Becker R, Büning K, Machtens E. Titanium implants as a temporary replacement of mandible. J Maxillofac Surg. 1977;5:167–171.

    Article  PubMed  CAS  Google Scholar 

  2. Ewers R, Joos U. Temporäre Defektüberbrückungen bei Unterkieferresektionen mit Osteosynthese-Methoden. Dtsch Zahnärztl Z. 1977;32:332–333.

    PubMed  CAS  Google Scholar 

  3. Reuther J, Hausamen JE. System zur alloplastischen Überbrückung von Unterkieferdefekten. Dtsch Zahnärztl Z. 1977; 32(4):334–337.

    PubMed  CAS  Google Scholar 

  4. Schmelzle R, Schwenzer N. Die Überbrückung von Unterkieferdefekten mit Metallimplantaten. Dtsch Zahnärztl Z. 1977;32(4):329–331.

    PubMed  CAS  Google Scholar 

  5. Spiessl B. Die Unterkieferresektionsplatte der AO, ihre Anwendung bei Unterkieferdefekten in der Tumorchirurgie. Unfallheilkunde. 1978;81:302–305.

    PubMed  CAS  Google Scholar 

  6. Raveh J, Stich H, Sutter F, Schawalder P. Neue Rekonstruktionsmöglichkeiten bei Unterkieferdefekten nach Tumorresektion. Schweiz Monatsschr Zahnheilk. 1981;91:899–920.

    CAS  Google Scholar 

  7. Raveh J, Stich H, Sutter F, Greiner R. Use of the titanium coated hollow screw and reconstruction plate system in bridging of lower jaw defects. J Oral Maxillofac Surg. 1984;42:281–294.

    PubMed  CAS  Google Scholar 

  8. Stoll P, Bähr W, Wächter R. Bridging of mandibular defects using AO-reconstruction plates. 3-DBRP-versus THORP-system. J Cancer Res Clin Oncol Suppl. 1990;116:707.

    Google Scholar 

  9. Schmelzle R, Schwenzer N. Erfahrungen mit der Tübinger Resektionsplatte in der Tumorchirugie. In: Scheunemann H, Schmidseder R, eds. Plastische Wiederherstellungschirurgie bei bösartigen Tumoren. Berlin: Springer-Verlag; 1982.

    Google Scholar 

  10. International Commission on Radiation Units and Measurement. Dose Specification for Reporting External Beam Therapy with Photons and Electrons. ICRU Report 29.

    Google Scholar 

  11. Hine GJ. Scattering of secondary electrons produced by gamma-rays in materials of various atomic numbers. Letter to the editor. Phys Res. 1951;82:755.

    Article  CAS  Google Scholar 

  12. Dutreix A, Bernard M. Études de la dose au voisinage de l’interface entre deux milieux de composition atomique différente exposées aux rayonnements Gamma du 60 Co. Phys Med Biol. 1962;7:69.

    Article  PubMed  CAS  Google Scholar 

  13. Dutreix J, Bernard N. Dosimetry at interfaces for high energy x and gamma rays. Br J Radiol. 1966;39:205–210.

    PubMed  CAS  Google Scholar 

  14. Dutreix J, Dutreix A, Bernard M, Bethencourt A. Études de la dose au voisinage de l’interface entre deux milieux de composition atomique different exposées à des RX 11 à 20 MV. Ann Radiol. 1964;7:233.

    Google Scholar 

  15. Wambersie A, Dutreix J, Bernard M. Variation de la dose au voisinage de l’interface entre le plexiglas et un métal exposées à des RX de 20 MV. Radiat Biol Ther. 1965;6:237.

    Google Scholar 

  16. Spiers FW. A review of the theoretical and experimental methods of determining the radiation dose in bone. Br J Radiol. 1966;39:216–221.

    PubMed  CAS  Google Scholar 

  17. Manegold K. Über den Einfluss den Elektronen-Streuung an Inhomogenitätskanten. Strahlentherapie. 1970; 140:647–650.

    PubMed  CAS  Google Scholar 

  18. Wall JA, Burke EA. Gamma dose distributions at and near the interface of different materials. IEEE Trans Nucl Sci. 1970;17: 305.

    CAS  Google Scholar 

  19. Berger MJ. Absorbed Dose near an Interface Between Two Media. Report 10550. Washington, DC: National Bureau of Standards. 1971:38.

    Google Scholar 

  20. Kulkarni RN, Sundararaman V, Prasad MA. The dose across a plane bone-tissue interface. Radiat Res. 1972;51:1.

    Article  PubMed  CAS  Google Scholar 

  21. Gibbs FA, Palos B, Goffinet DR. The metal/tissue interface effect in irradiation of the oral cavity. Radiology. 1977;124: 815–817.

    Google Scholar 

  22. Murthy MSS, Lakshmanan AR. Dose enhancement due to backscattered electrons at the interface of two media. Radiat Res. 1976;67:215–223.

    Article  PubMed  CAS  Google Scholar 

  23. Gagnon WF, Cundiff J-H. Dose enhancement from backscattered radiation at tissue-metal interfaces irradiated with high energy electrons. Br J Radiol. 1980;53:466–470.

    Article  PubMed  CAS  Google Scholar 

  24. Stoll P, Wächter R, Hodapp N. Radiation and osteosynthesis. Dosimetry on an irradiation phantom. J Craniomaxillofac Surg. 1990;18:361–366.

    PubMed  CAS  Google Scholar 

  25. Gullane PJ. Primary mandibular reconstruction: analysis of 64 cases and evaluation of interface radiation dosimetry on bridging plates. Laryngoscope. 1991;101:1–24.

    Article  PubMed  CAS  Google Scholar 

  26. Frössler H, Springer L, Wannenmacher M. Dosismessungen bei Kobalt-Teletherapie-Bestrahlung im Mundhöhlenbereich nach Titanium-Metallimplantation. ZWR 1975;84:258–260.

    PubMed  Google Scholar 

  27. Maerker R, Würthner K, Timmermann J. Experimentelle Untersuchungen über die Dosisverteilung bei Co60-Bestrahlung nach Draht-und Plattenosteosynthese. Fortschr Kiefer-Gesichtschir. 1976;21:208–210.

    PubMed  CAS  Google Scholar 

  28. Thambi V, Murthy AK, Alder G, Kartha PK. Dose perturbation resulting from gold fillings in patients with head and neck cancers. Int J Radiat Onkol Biol Phys. 1979;5:581–582.

    CAS  Google Scholar 

  29. Farman AG, Sharma S, George DI, Wilson D, Dodd D, Figa R, et al. Backscattering from dental restorations and splint materials during therapeutic radiation. Radiolology. 1985;156:523–526.

    CAS  Google Scholar 

  30. Eichhorn N, Gerlach R, Salewski WD, Sommet G. Thermoluminiszenz Dosimetrische Untersuchung zum Absorptions-Verhalten von Knochen ohne und mit Metallimplantaten. Strahlenther Onkologre. 1986;262:799–884.

    Google Scholar 

  31. Gibbs FA, Palos B, Goffinet DR. The metal/tissue interface effect in irradiation of the oral cavity. Radiol. 1984; 119:705–707.

    Google Scholar 

  32. Scrimger JW. Backscatter from high atomic number materials in high energy photon beams. Radiology. 1977;124:815–817.

    PubMed  CAS  Google Scholar 

  33. Sailer U. Veränderung der Dosisverteilung ultraharter Röntgenstrahlung durch Ausstreuung aus Inhomogenitäten. Strahlentherapie. 1980;156:832–835.

    PubMed  CAS  Google Scholar 

  34. Mian TA, Putten van MC Jr, Kramer DC, Jacob RF, Boyer AL. Backscatter radiation at bone titanium interface from high-energy X and gamma rays. Int J Radiat Oncol Biol Phys. 1987; 13:1943.

    PubMed  CAS  Google Scholar 

  35. Hudson FR, Crawley MD, Samaraskera M. Radiotherapy treatment planning for patients fitted with prosthesis. Br J Radiol. 1984;57:603–608.

    PubMed  CAS  Google Scholar 

  36. Tatcher M, Kuten A, Helman J, Laufer D. Perturbation of cobalt60 radiation doses by metal objects implanted during oral and maxillofacial surgery. J Oral Maxillofac Surg. 1984;42:108–110.

    PubMed  CAS  Google Scholar 

  37. Rosendahl EW, Kirschner H. Änderung der Tiefendosis durch eine Titan-Endoprothese bei der 60CO-Strahlentherapie. Strahlentherapie. 1979;155:20–22.

    PubMed  CAS  Google Scholar 

  38. Schweiger JW. Titanium implants in irradiated dog mandibles. J Prosthet Dent. 1989;60:201.

    Google Scholar 

  39. Montag H. Osseointegration of Brånemark Fixtures—an animal study. XVIII Congress of the European Society for Artificial Organs. Vienna. 1991.

    Google Scholar 

  40. Lange K-P, Laaß M, Retemeyer K. Eine tierexperimentelle Studie zum Einheilverhalten enossaler Implantate im bestrahlten Knochen. Dtsch Zahnärztl Z. 1993;48:512–514.

    Google Scholar 

  41. Brånemark PI. Einführung in die Osseointegration. In: Brånemark PI, Zarb GA, Albrektsson T, eds. Gewebeintegrierter Zah nersatz. Osseointegration in Klinischer Zahnheilkunde. Quintessenz; Berlin; 1985.

    Google Scholar 

  42. Jacobsson M, Jönsson A, Albrektsson T, Turesson I. Alterations in bone regenerative capacity after low level gamma irradiation. Scand J Plast Reconstr Surg. 1985;19:231–236.

    PubMed  CAS  Google Scholar 

  43. Jacobsson M, Tjellström A, Thomsen P, Albrektsson T, Turesson I. Integration of titanium implants in irradiated bone. Ann Otol Rhinol Laryngol 1988;97:337–340.

    PubMed  CAS  Google Scholar 

  44. Sindet-Pedersen S. The transmandibular implant for reconstruction following radiotherapy and hemimandibulectomy: report of a case. J Oral Maxillofac Surg. 1988;46:158–160.

    PubMed  CAS  Google Scholar 

  45. Dehen N, Niederdellmann H. Zur postoperativen prothetischen Versorgung von Tumorpatienten. Z Zahnärztl Implantol. 1991; 7:131–134.

    Google Scholar 

  46. Esser E, Dubrawski J. Enossale Implantate bei der Rehabilitation von Tumorpatienten. 32. Congrès Francais de Stomatologie et de Chirurgie Maxillo-Faciale, Strassbourg; 1991.

    Google Scholar 

  47. Nishimura RD, Lewis SG, Shimizu KT. Osseointegrated implants and patient’s status post radiation therapy. 4th Internat. Congr. Preprosthetic Surg. Palm Springs, CA; 1991.

    Google Scholar 

  48. Stoll P, Wächter R. Tumorbestrahlung und Überbrückungs osteosynthese? Dtsch Z Mund-Kiefer-Gesichtschir. 1993;17:224–229.

    Google Scholar 

  49. Taylor TD, Worthingthon P. Ossteointegrated implant rehabilitation of the previously irradiated mandible: results of a limited trial at 3 to 7 years. J Prosthet Dent. 1993;69:60–69.

    Article  PubMed  CAS  Google Scholar 

  50. Wächter R, Stoll P. Möglichkeiten und Grenzenenossaler Implantate beider Øralen Rehabilitation von Tumorpatienten nach Bestrahlung. Z Zahnärztle Implantol. 1994;10:171–176.

    Google Scholar 

  51. Frössler H, Engberding R, Rauba HJ, Schütz J. Erfahrungen mit dem PTW Lithiumfluoridthermolumineszenzdosimeter. Röntgenpraxis. 1971;24:242–249.

    PubMed  Google Scholar 

  52. Ellis S. Dose, time and fractionation. A clinical hypothesis. Clin Radiol. 1969;20:1.

    Article  PubMed  CAS  Google Scholar 

  53. Rahn BA. Die polychrome Sequenzmarkierung des Knochenumbaus. Nova Acta Leopoldina. 1976;44:249–255.

    Google Scholar 

  54. Donath K. Sägeschlifftechnik. Fortschr Kiefer Gesichtschir. 1983;28:97–100.

    Google Scholar 

  55. Wächter R, Stoll P. Komplikationen nach primärer Unterkieferrekonstruktion mit THORP-Platten. In: Neumann H-J, ed. Ästhetische und plastisch-rekonstruktive Gesichtschirurgie. Einhorn-Presse Verlag, Reinbek; 1993:259.

    Google Scholar 

  56. Stoll P, Wächter R, Hodapp N. Tumorestrahlung und Überbückungsosteosynthese. Dosismessungen an einem Bestrahlungsphantom. Dtsch Z Mund-Kiefer-Gesichtschir. 1989;13:165–171.

    PubMed  CAS  Google Scholar 

  57. Ebbers J, Kürten-Rothes R, Ganzer U. Metallplatten-Osteosynthese und Nachbestrahlung. Eine tierexperimentelle Studie. Laryngol Rhinol Otol. 1985;64:32–36.

    CAS  Google Scholar 

  58. Ellis F, Winston BN, Fowler JS, De Ginder WL. Three or five fractions per week: treated on alternate treatment days. Letter of the editor. Br J Radiol. 1969;42:715–716.

    PubMed  CAS  Google Scholar 

  59. Ellis F, Sorensen A, Lescrenier C. Radiation therapy schedules for opposing parallel fields and their biological aspects. Radiology. 1974:701–707.

    Google Scholar 

  60. Garrett P, Pugh H, Ross I, Hamarker R, Singer M. Intraoperative radiation therapy for advanced or recurrent head and neck malignancies In: Dobelbauer R, Abe B, eds. Intraoperative Radiation Therapy. Boca Raton, FL: CRC Press; 1989.

    Google Scholar 

  61. Freeman SB, Hamarker RC, Singer MI. Intraoperative radiotherapy of head and neck cancer. Arch Otolaryngol Head Neck Surg. 1990; 116:165–168.

    PubMed  CAS  Google Scholar 

  62. Schmitt T, Berbitt N, Puel S, Prodes JM, Martin C, Pinto M. The use of intraoperative radiotherapy in the treatment of T3-T4-carcinomas of the base of the tongue. In: Abe M, Takahashi N, eds. Intraoperative Radiation Therapy. New York: Pergamon; 1991.

    Google Scholar 

  63. Stoll P, Nilles A. Experience with intraoperative radiation therapy (IORT) in head and neck surgery. In: Schildberg FW, Willich N, Kremling H-J, eds. Intraoperative Radiation Therapy, Proceedings/4th International Symposium IORT, Munich; 1992. Essen: Die Blaue Eule; 1993.

    Google Scholar 

  64. Wächter R, Diz Dios P. Zur oralen Funktion von Tumorpatienten nach Operation und Versorgung mit Bonefit-Implantaten. Erste qualitative und quantitative Ergebnisse. Z Zahnärztl Implantol. 1993;9:134–138.

    Google Scholar 

  65. Wächter R, Stoll P. Möglichkeiten und Grenzen enossaler Implantate bei der oralen Rehabilitation von Tumorpatienten nach Bestrahlung. Z Zahnärztl Implantol. 1994;10:171–176.

    Google Scholar 

  66. Wächter R, Stoll P, Schilli W. Dental implants for the oral rehabilitation in patients with mandibular bone grafts. In: Kärcher H, ed. Functional Surgery of the Head and Neck. Graz: RM-Druck u. Verlagsgesellschaft; 1995.

    Google Scholar 

  67. Albrektsson T, Jacobsson T, Turesson I. Bone remodelling at implant sites after irradiation injury. Methodological approaches to study the effects of CO60 administered in a single dose of 15 Gy. Swed Dent J. 1985;Suppl 28:193–203.

    Google Scholar 

  68. Sumner DR, Turner TN, Pierson RH, Kienapfel H, Urban RN, Liebner EJ, et al. Effects of radiation from fixation of non-cemented porous-coated implants in a canine model. J Bone Joint Surg. 1990;72A: 1527–1533.

    Google Scholar 

  69. Matsui Y, Ohno K, Michi K-I, Tachikawa T. Histomorphometric examination of healing around hydroxylapatite implants in 60CO-irradiated bone. J Oral Maxillofac Surg. 1994;52:167–172.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Stoll, P., Wächter, R. (2002). Radiation Therapy and Considerations for Internal Fixation Devices. In: Greenberg, A.M., Prein, J. (eds) Craniomaxillofacial Reconstructive and Corrective Bone Surgery. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22427-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22427-5_40

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94686-3

  • Online ISBN: 978-0-387-22427-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics