Skip to main content

Metal for Craniomaxillofacial Internal Fixation Implants and Its Physiological Implications

  • Chapter
Craniomaxillofacial Reconstructive and Corrective Bone Surgery

Abstract

Implants function as a temporary splint. In the form of a screw, a plate, or a pin, the implant stabilizes the fracture and supports forces in addition to those of functional load. Yet the implant is a foreign body. Is this foreign body an insult of the chemical, physiological, or mechanical kind for the living tissue?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simpson JP, Geret V, Brown SA, Merritt K. Retrieved fracture plates—implant and tissue analysis. In: Weinstein A, Gibbons D, Brown S, Ruoff S, eds. Implant Retrieval-Material and Biological Analysis. NBS Spec. Publ. 601, 1981:395–422.

    Google Scholar 

  2. Steinemann SG. Corrosion of titanium and titanium alloys for surgical implants. In: Lütjering G, Zwicker V, Bunk W, eds. Titanium, Science and Technology; Proc 5th Intl Conf Titanium. Oberursel: Deutsche Gesellschaft Metallkunde. 1985:1373–1379.

    Google Scholar 

  3. Steinemann SG. Corrosion of implant alloys. In: Buchhorn GH, Willert HG, eds. Technical Principles, Design and Safety of Joint Implants. Seattle: Hogrefe & Huber Publishers; 1994: 168–179.

    Google Scholar 

  4. Gerber H, Perren SM. Evaluation of tissue compatibility of in vitro cultures of embryonic bone. In: Winter GD, Leray JL, de Groot K, eds. Evaluation of Biomaterials. Chichester: John Wiley & Sons, 1980:307–314.

    Google Scholar 

  5. Gerber HW, Moosmann A, Steinemann S. Bioactivity of metals—tissue tolerance of soluble or solid metal, tested on organ cultured embryonic bone rudiments. In: Buchhorn GH, Willert HG, eds. Technical Principles, Design and Safety of Joint Implants. Seattle: Hogreve & Huber Publishers; 1994:248–254.

    Google Scholar 

  6. Rae T. The toxicity of metals used in orthopaedic prostheses. JBone Joint Surg. 1981;63-B:435–440.

    CAS  Google Scholar 

  7. Luckey TD, Venugopal B. Metal Toxicity in Mammals, Vol. 1, Physiological and Chemical Basis. New York: Plenum Press, 1977:39-91, 103–128.

    Google Scholar 

  8. Steinemann SG, Mäusli P-A. Titanium alloys for surgical implants-biocompatibility from physicochemical principles. In: Lacombe P, Tricot R, Béranger G, eds. 6th World Conf Titanium, France 1988. Les Ulis: Les éditions de physique. 1988; 535–540.

    Google Scholar 

  9. Baes CF, Mesmer RE. The Hydrolysis of Cations. New York: John Wiley & Sons; 1976.

    Google Scholar 

  10. Steinemann SG. Tissue compatibility of metals from physicochemical principles. In: Kovacs P, Istephanous NS, eds. Proc Symp Compatibility of Biomedical Implants, vol. 94-15. Pennington, NJ: The Electrochemical Society, 1994:1–13.

    Google Scholar 

  11. Black J. Biological Performance of Materials. New York: Marcel Dekker; 1992:184–199.

    Google Scholar 

  12. Steinemann SG, Eulenberger J, Mäusli P-A, Schroeder A. Adhesion of bone to titanium. In: Christel P, Meunier A, Lee AJC, eds. Biological and Biomechanical Performance of Biomaterials. Amsterdam: Elsevier Science Publishers. 1986:409–414.

    Google Scholar 

  13. Gold JM, Schmidt M, Steinemann SG. XPS study of amino acid adsorption to titanium surfaces. Helv Phys Acta. 1989:62: 246–249. Idem. XPS study of retrieved titanium and Ti alloy implants. In: Heimke G, Soltész V, Lee AJC, eds. Clinical Implant Materials-Advances in Biomaterials, vol. 9. Amsterdam: Elsevier Science; 1990:69-74.

    CAS  Google Scholar 

  14. Listgarten MA, Buser D, Steinemann SG, Donath K, Lang NP, Weber H-P. Light and transmission electron microscopy of the intact interfaces between non-submerged titanium-coated epoxy resin implants and bone or gingiva. J Dental Res. 1992; 71: 364–371.

    CAS  Google Scholar 

  15. Eulenberger J, Steinemann SG. Lösemomente an Kleinschrauben aus Stahl und Titan mit unterschiedlichen Oberflächen. Unfallchirurg. 1990;93:96–99.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Steinemann, S.G. (2002). Metal for Craniomaxillofacial Internal Fixation Implants and Its Physiological Implications. In: Greenberg, A.M., Prein, J. (eds) Craniomaxillofacial Reconstructive and Corrective Bone Surgery. Springer, New York, NY. https://doi.org/10.1007/978-0-387-22427-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-22427-5_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94686-3

  • Online ISBN: 978-0-387-22427-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics