Skip to main content

Unstable periodic orbits and the dimensions of multifractal chaotic attractors

  • Chapter
The Theory of Chaotic Attractors

Abstract

The probability measure generated by typical chaotic orbits of a dynamical system can have an arbitrarily fine-scaled interwoven structure of points with different singularity scalings. Recent work has characterized such measures via a spectrum of fractal dimension values. In this paper we pursue the idea that the infinite number of unstable periodic orbits embedded in the support of the measure provides the key to an understanding of the structure of the subsets with different singularity scalings. In particular, a formulation relating the spectrum of dimensions to unstable periodic orbits is presented for hyperbolic maps of arbitrary dimensionality. Both chaotic attractors and Chaotic repellers are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Farmer, E. Ott, and J. A. Yorke, Physica D 7, 153 (1983)

    Article  MathSciNet  Google Scholar 

  2. Grassberger, Phys. Lett. 97A, 227 (1983).

    Article  MathSciNet  Google Scholar 

  3. G. E. Hentschel and I. Procaccia, Physica D 8, 435 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Grassberger, Phys. Lett. 107A, 101 (1985); T. C. Halsey, M.J. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman,Phys. Rev. A 33, 1141 (1986).

    Article  Google Scholar 

  5. C. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. A 36, 3522 (1987). Recent related works are the following: T. Morita, H. Hata, H. Mori, T. Horita, nd K. Tornita, Progr. Theor. Phys. 78, 511 (1987); G. Gunaratne and I. Procaccia, Phys. Rev. Lett. 59, 1377 ( 1987 ); M. H. Jensen (unpublished).

    Google Scholar 

  6. Bowen, Trans. Am. Math. Soc. 154, 377 (1971).

    MathSciNet  MATH  Google Scholar 

  7. B. Katok, Publ. Math. IHES 51, 137 (1980).

    Google Scholar 

  8. P. Kadanoff and C. Tang, Proc. Natl. Acad. Sci. USA 81, 1276 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  9. Auerbach, P. Cvitanovic, J.-P. Eckmann, G. Gunaratne, and I. Procaccia, Phys. Rev. Lett. 58, 2387 (1987).

    Article  MathSciNet  Google Scholar 

  10. Grebogi, E. Ott, and J. A. Yorke, Phys. Rev. Lett. 57, 1284 (1986); Phys. Rev. A 36, 5365 (1987).

    MathSciNet  Google Scholar 

  11. V. Berry, in Chaotic Behavior of Deterministic Systems, edited by G. Iooss, R. H. G. Heileman, and R. Stora ( North-Holland, Amsterdam, 1983 ), p. 171–271.

    Google Scholar 

  12. H. Hannay and A. M. Ozorio de Almeida, J. Phys. A 17, 3429 (1984).

    MathSciNet  Google Scholar 

  13. V. Berry, Proc. R. Soc. London A 400, 229 (1985).

    Article  MATH  Google Scholar 

  14. F. Hausdorff, Math. Annalen 79, 157 (1918).

    Article  Google Scholar 

  15. N. Kolmogorov, Dokl. Akad. Nauk SSSR 119, 861 (1958).

    MATH  Google Scholar 

  16. A. Renyi, Acta Mathematica (Hungary) 10, 193 (1959).

    Google Scholar 

  17. Kaplan and J. Yorke, in Functional Differential Equations and the Approximation of Fixed Points, Vol. 730 of Lecture Notes in Mathematics, edited by H. O. Peitgen and H. O. Walther ( Springer, Berlin, 1978 ), p. 228.

    Google Scholar 

  18. R. Bowen, On Axiom A Diffeomorphisms,CBMS Regional Conference Series in Mathematics (American Mathematical Society, Providence, 1978), Vol. 35.

    Google Scholar 

  19. Grebogi, E. Ott, and J. A. Yorke, Physica D 7, 181 (1983).

    Article  MathSciNet  Google Scholar 

  20. H. Kantz and P. Grassberger, Physica D 17, 75 (1985); G. Hsu, E. Ott, and C. Grebogi, Phys. Lett. A (to be published).

    Google Scholar 

  21. P. Szépfalusy and T. Tél, Phys. Rev. A 34, 2520 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grebogi, C., Ott, E., Yorke, J.A. (1988). Unstable periodic orbits and the dimensions of multifractal chaotic attractors. In: Hunt, B.R., Li, TY., Kennedy, J.A., Nusse, H.E. (eds) The Theory of Chaotic Attractors. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21830-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21830-4_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2330-1

  • Online ISBN: 978-0-387-21830-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics