Skip to main content

A Tutorial on Image Analysis

  • Chapter

Part of the book series: Lecture Notes in Statistics ((LNS,volume 173))

Abstract

Data arise in the form of images in many different areas and using many different technologies. Within medical diagnostics, X-rays are probably the most well-known form of direct imaging, gathering structural information about the body by recording the transmission of X-rays. More recent advances have been the various emission-based technologies, PET and SPECT, which aim to map metabolic activity in the body, and MRI (Figure 3.1c) which again provides structural information. On two quite different scales, satellites (Figure 3.1a and b) and microscopes (Figure 3.1d) monitor and record useful scientific information; for example, aerial imaging in different wavebands and at different stages in the growing season can be used to detect crop subsidy fraud, while some types of microscopy can be used to generate temporal sequences of three dimensional images, leading to a greater understanding of biological processes. There is an expectation that technological advances should soon provide solutions to problems such as automatic face or hand recognition, or unsupervised robotic vision.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baddeley, A. J. and Van Lieshout, M. N. M. (1993). Stochastic geometry models in high—level vision, in K. V. Mardia and G. K. Kanji (eds), Statistics and Images, Vol. 20, Carfax Publishing, Abingdon, pp. 235–256.

    Google Scholar 

  • Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion), Journal of the Royal Statistical Society, Series B 36: 192–225.

    MathSciNet  MATH  Google Scholar 

  • Besag, J. (1986). On the statistical analysis of dirty pictures (with discussion), Journal of the Royal Statistical Society, Series B 48: 259–302.

    MathSciNet  MATH  Google Scholar 

  • Besag, J. and Green, P. J. (1993). Spatial statistics and Bayesian computation (with discussion), Journal of the Royal Statistical Society, Series B 55: 25–37.

    Google Scholar 

  • Blake, A. and Isard, M. (1998). Active Contours,Springer-Verlag, Berlin.

    Google Scholar 

  • Blake, A. and Zisserman, A. (1987). Visual Reconstruction, MIT Press, Cambridge, MA.

    Google Scholar 

  • Charbonnier, P. (1994). Reconstruction d’image: Régularization avec prise en compte des discontinuités, PhD thesis, Univ. Nice, Sophia Antipo-lis, France.

    Google Scholar 

  • Charbonnier, P., Blanc-Feraud, L., Aubert, G. and Barlaud, M. (1997). Deterministic edge-preserving regularization in computed imaging, IEEE Transaction on Image Processing 6: 298–311.

    Google Scholar 

  • Dryden, I. and Mardia, K. (1999). Statistical Shape Analysis, John Wiley and Sons, Chichester.

    Google Scholar 

  • Friel, N. and Molchanov, I. (1998). Distances between grey-scale images, Mathematical morphology and its applications to image and signal processing, Vol. 12 of Comput. Imaging Vision, Amsterdam, The Netherlands, pp. 283–290.

    Google Scholar 

  • Geman, D. (1990). Random fields and inverse problems in imaging, in P. L. Hennequin (ed.), Ecole d’ete de probabilites de Saint-Flour XVIII, 1988, Springer, Berlin. Lecture Notes in Mathematics, no 1427.

    Google Scholar 

  • Geman, D. and Yang, C. (1995). Nonlinear image recovery with half-quadratic regularization, IEEE Transaction on Image Processing 4: 932–946.

    Article  Google Scholar 

  • Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence 6: 721–741.

    Article  MATH  Google Scholar 

  • Geman, S. and McClure, D. (1987). Statistical methods for tomographie image reconstruction, Proc. 46th Sess. Int. Stat. Inst. Bulletin ISI, Vol. 52.

    Google Scholar 

  • Geyer, C. (1999). Likelihood inference for spatial point processes, in O. E. Barndorff-Nielsen, W. S. Kendall and M. N. M. van Lieshaut (eds), Stochastic Geometry: Likelihood and Computation, Chapman and Hall/CRC, London, Boca Raton, pp. 79–140.

    Google Scholar 

  • Geyer, C. J. and Moller, J. (1994). Simulation procedures and likelihood inference for spatial point processes, Scandinavian Journal of Statistics 21: 359–373.

    MathSciNet  MATH  Google Scholar 

  • Glasbey, C. A. and Mardia, K. V. (2001). A penalized likelihood approach to image warping (with discussion), Journal of the Royal Statistical Society, Series B 63: 465–514.

    MathSciNet  MATH  Google Scholar 

  • Green, P. J. (1990). Bayesian reconstruction from emission tomography data using a modified EM algorithm, IEEE Transaction on Medical Imaging 9: 84–93.

    Article  Google Scholar 

  • Green, P. J. (1995). Reversible jump MCMC computation and Bayesian model determination, Biometrika 82: 711–732.

    Article  MathSciNet  MATH  Google Scholar 

  • Greig, D. M., Porteous, B. T. and Scheult, A. H. (1989). Exact maximum a posteriori estimation for binary images, Journal of the Royal Statistical Society, Series B 51: 271–279.

    Google Scholar 

  • Grenander, U. (1993). General Pattern Theory, Oxford University Press, Oxford.

    Google Scholar 

  • Grenander, U., Chow, Y. and Keenan, D. M. (1991). Hands: a Pattern Theoretic Study of Biological Shapes, Research Notes on Neural Computing, Springer, Berlin.

    Google Scholar 

  • Grenander, U. and Miller, M. I. (1994). Representations of knowledge in complex systems (with discussion), Journal of the Royal Statistical Society, Series B 56: 549–603.

    MathSciNet  MATH  Google Scholar 

  • Grimmett, G. (1987). Interacting particle systems and random media: An overview, International Statistics Review 55: 49–62.

    Article  MathSciNet  MATH  Google Scholar 

  • Hebert, T. and Leahy, R. (1989). A generalized EM algorithm for 3D Bayesian reconstruction form Poisson data using Gibbs priors, IEEE Transaction on Medical Imaging 8: 194–202.

    Article  Google Scholar 

  • Hobolth, A. and Jensen, E. B. V. (2000). Modelling stochastic changes in curve shape, with application to cancer diagnostics, Advances in Applied Probability (SGSA) 32: 344–362.

    Article  MathSciNet  MATH  Google Scholar 

  • Hokland, J. and Kelly, P. (1996). Markov models of specular and diffuse scattering in restoration of medical ultrasound images, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 43: 660–669.

    Article  Google Scholar 

  • Husby, O. (2001). High-level models in ultrasound imaging, Preprint, Department of Mathematical Sciences, Norwegian University of Technology and Science, Trondheim.

    Google Scholar 

  • Husby, O., Lie, T., Lango, T., Hokland, J. and Rue, H. (2001). Bayesian 2d deconvolution: A model for diffuse ultrasound scattering, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 48: 121–130.

    Article  Google Scholar 

  • O’Rourke, J. (1998). Computational Geometry in C, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Rue, H. (2001). Fast sampling of Gaussian Markov random fields with applications, Journal of the Royal Statistical Society, Series B 63: 325–338.

    MathSciNet  MATH  Google Scholar 

  • Rue, H. and Hurn, M. A. (1999). Bayesian object identification, Biometrika 86: 649–660.

    Article  MathSciNet  MATH  Google Scholar 

  • Stander, J. and Silverman, B. W. (1994). Temperature schedules for simulated annealing, Statistics and Computing 4: 21–32.

    Article  Google Scholar 

  • Swendsen, R. and Wang, J. (1987). Nonuniversal critical dynamics in Monte Carlo simulations, Physical Review Letters 58: 86–88.

    Article  Google Scholar 

  • Tjelmeland, H. and Besag, J. (1998). Markov random fields with higher order interactions, Scandinavian Journal of Statistics 25: 415–433.

    Article  MathSciNet  MATH  Google Scholar 

  • Van Lieshout, M. N. M. (1995). Markov point processes and their applications in high-level imaging (with discussion), Bulletin of the International Statistical Institute LVI, Book 2: 559–576.

    Google Scholar 

  • Winkler, G. (1995). Image Analysis, Random Fields and Dynamic Monte Carlo Methods, Springer, Berlin.

    Book  MATH  Google Scholar 

  • Wood, A. T. A. and Chan, G. (1994). Simulation of stationary Gaussian processes in [0,1]d, Journal of Computational and Graphical Statistics 3: 409–432.

    MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hurn, M.A., Husby, O.K., Rue, H. (2003). A Tutorial on Image Analysis. In: Møller, J. (eds) Spatial Statistics and Computational Methods. Lecture Notes in Statistics, vol 173. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21811-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21811-3_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00136-4

  • Online ISBN: 978-0-387-21811-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics