Advertisement

The Ant in the Gurge Metaphor

  • Bruce J. West
  • Mauro Bologna
  • Paolo Grigolini
Chapter
  • 407 Downloads
Part of the Institute for Nonlinear Science book series (INLS)

Abstract

The ant in the labyrinth problem posed by de Gennes in 1976 concerned the description of the random movement of an entity (the ant) in a disordered system (the labyrinth) [8] and was a metaphor for the general problem of transport in disordered media. The general physical problem was to represent the evolution of conduction electrons in amorphous materials, phase dislocations in polymer gels, and myriad other phenomena. On the other hand, the ant as metaphor, like every other localized quantity in physics, has its corresponding nonlocal, wavelike aspect. Material properties, such as the distribution of grain sizes in polycrystalhne materials, the degree of homogeneity, the existence of microscopic cracks, inclusions, twin boundaries, and dislocations, all affect fracture micromechanics and wave propagation. To describe the motion of this generalized ant through such disordered, but scaling, materials we change de Gennes’ image to that of an ant in a gurge, that is, an ant in a kind of turbulent flow field. In terms of this modified image we construct an equation that in one limit models fractional diffusion and in another limit models fractional wave propagation. This new equation is the fractional generalization of the telegrapher’s equation. But in addition to these physical processes we also use this metaphor to describe the influence of scaling on the observables in other complex phenomena as well.1

Keywords

Renormalization Group Fractional Derivative Fractional Brownian Motion Anomalous Diffusion Fractional Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    P. Allegrini, M. Buiatti, P. Grigolini and B. J. West, Fractional Brown-ian motion as a nonstationary process: An alternative paradigm for DNA sequences, Phys. Rev. E 57, 4558 (1998).ADSCrossRefGoogle Scholar
  2. [2]
    P. Allegrini, P. Grigolini and B. J. West, Dynamical approach to Lévy processes, Phys. Rev. E 54, 4760–4767 (1996).ADSCrossRefGoogle Scholar
  3. [3]
    D. R. Bickel and B. J. West, J. Mol. Evol. 47, 551 (1998).CrossRefGoogle Scholar
  4. [4]
    M. Berry, Diffractals, J. Phys. A: Math. Gen. vol. 12, 781–797 (1979).ADSCrossRefGoogle Scholar
  5. [5]
    J. -P. Bouchaud and A. Georges, Phys. Rept. 195, 127 (1990)MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    B. V. Chirikov, Phys. Rept. 52, 265 (1979).MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    A. Compte, Stochastic foundations of fractional dynamics, Phys. Rev. E 53, 4191 (1996).ADSCrossRefGoogle Scholar
  8. [8]
    P. G. de Gennes, La Recherche 7, 919 (1976).Google Scholar
  9. [9]
    W. G. Glöckle and T. F. Nonnenmacher, Macromolecules 24, 6426 (1991).ADSCrossRefGoogle Scholar
  10. [10]
    W. G. Glöckle and T. F. Nonnenmacher, A fractional Calculus approach to self-similar protein dynamics, Biophys. J. 68, 46–53 (1995).ADSCrossRefGoogle Scholar
  11. [11]
    W. G. Glöckle and T. F. Nonnenmacher, Fox function representation of non-Debye relaxation processes, J. Stat. Phys. 71 (1993) 741.ADSzbMATHCrossRefGoogle Scholar
  12. [12]
    W. G. Glöckle and T. F. Nonnenmacher, Fractional relaxation and the time-temperature superposition principle, Rheol. Acta 33 (1994) 337.CrossRefGoogle Scholar
  13. [13]
    J. M. Hausdorff, C. -K. Peng, Z. Ladin, J. Y. Wei and A. L. Goldberger, J. Appl. Physiol 78, 349 (1995).Google Scholar
  14. [14]
    S. Havlin and D. Ben-Avraham, Adv. in Phys. 36, 695 (1987).ADSCrossRefGoogle Scholar
  15. [15]
    R. Hilfer, Ed., Applications of Fractional Calculus in Physics, World Scientific, Singapore (1999).Google Scholar
  16. [16]
    R. Hilfer, Classification theory for an equilibrium phase transitions, Phys. Rev. E 48, 2466 (1993).MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    G. Jano-Lasino, The Renormalization Group: A Probabilistic View, Nuovo Cimento 29B, 99–119 (1975).ADSGoogle Scholar
  18. [18]
    M. Jaroniec, Reac. Kinet. Catal Lett. 8, 425 (1978)CrossRefGoogle Scholar
  19. [19]
    P. Jörgi, D. Sornette and M. Blank, Fine structure and complex exponents in power-law distributions from random maps, Phys. Rev. E 57, 120 (1998).ADSCrossRefGoogle Scholar
  20. [20]
    D. D. Joseph and L. Preziosi, Rev. Mod. Phys. 61, 41 (1989).MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. [21]
    L. P. Kadanoff, Fractals: Where’s the beef?, Physics Today, 6 (Feb.) (1986).Google Scholar
  22. [22]
    R. Metzler, E. Barkai and J. Klafter, Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation, Phys. Rev. Lett. 82, 3563–3567 (1999).ADSCrossRefGoogle Scholar
  23. [22]
    R. Metzler, E. Barkai and J. Klafter, From continuous time random waks to the fractional Fokker-Planck equation, Phys. Rev. E 61, 132–138 (2000).MathSciNetADSCrossRefGoogle Scholar
  24. [23]
    E. W. Montroll and B. J. West, On an enriched collection of stochastic processes, in Fluctuation Phenomena, pp.61–206, E.W. Montroll and J.L. Lebowitz, eds., second edition, North-Holland Personal Library, North-Holland, Amsterdam, (1987).Google Scholar
  25. [23a]
    E. W. Montroll and B. J. West, On an enriched collection of stochastic processes, in Fluctuation Phenomena, pp.61–206, E.W. Montroll and J.L. Lebowitz, eds., first edition (1979).Google Scholar
  26. [24]
    E.W. Montroll and M.F. Shlesinger, On the wonderful world of random walks, in Nonequilibrium Phenomena II: From Stochastics to Hydrodynamics, 1–121, E.W. Montroll and J.L. Lebowitz, eds., North-Holland, Amsterdam (1983).Google Scholar
  27. [25]
    T. J. Osler, An integral analogue of Taylor’s series and its use in computing Fourier transforms, Math. Comp. 26, 449–460 (1972).MathSciNetzbMATHGoogle Scholar
  28. [26]
    C. K. Peng, S. Buldyrev, A. L. Goldberger, S. Havlin, F. Sciortino, M. Simons, and H. E. Stanley, Long-range correlations in nucleotide sequences, Nature 356, 168 (1992).ADSCrossRefGoogle Scholar
  29. [27]
    C. K. Peng, J. Mietus, J. M. Hausdorff, S. Havlin, H. G. Stanley and A. L. Goldberger, Long-range anticorrelations and non-Gaussian behavior of the heartbeat, Phys. Rev. Lett. 70, 1343 (1993).ADSCrossRefGoogle Scholar
  30. [28]
    L. F. Richardson, Atmospheric diffusion shown on a distance-neighbour graph, Proc. Roy. Soc. London A 110, 709–737 (1926).ADSCrossRefGoogle Scholar
  31. [29]
    S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach, New York (1993).zbMATHGoogle Scholar
  32. [30]
    W. R. Schneider and W. Wyss, J. Math. Phys. 30, 134 (1989).MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. [31]
    M. F. Shlesinger, B. J. West and J. Klafter, Lévy dynamics for enhanced diffusion: an application to turbulence, Phys. Rev. Lett. 58, 1100–1103 (1987).MathSciNetADSCrossRefGoogle Scholar
  34. [32]
    A. J. F. Siegert, Phys. Rev. 81, 617 (1951).MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. [33]
    G. E. Uhlenbeck and L. S. Ornstein, On the theory of the Brownian motion, Phys. Rev. 36, 823 (1930).ADSCrossRefGoogle Scholar
  36. [34]
    B. J. West and V. Seshadri, Linear systems with Lévy fluctuations, Physica A 113, 203–216 (1982).MathSciNetADSCrossRefGoogle Scholar
  37. [35]
    B. J. West, Sensing scaled scintillations, J. Opt. Soc. Am. 7, 1074 (1990).ADSCrossRefGoogle Scholar
  38. [36]
    B. J. West and W. Deering, Fractal Physiology for Physicists: Lévy Statistics, Phys. Repts. 246, 1–100 (1994).ADSCrossRefGoogle Scholar
  39. [37]
    B. J. West and P. Grigolini, Fractional differences, derivatives and fractal time series, in Applications of Fractional Calculus in Physics, ed. R. Hilfer, World Scientific, Singapore (1998).Google Scholar
  40. [38]
    B. J. West, R. Zhang, A. W. Sanders, S. Miniyar, J. H. Zucherman and B. D. Levine, Fractal fluctuations in transcranial Doppler signals, Phys. Rev. E 59, 1 (1999).CrossRefGoogle Scholar
  41. [39]
    B. J. West and L. Griffin, Allometric control, inverse power laws and human gait, Chaos, Solitons & Fractals 10, 1519 (1999).ADSzbMATHCrossRefGoogle Scholar
  42. [39a]
    B. J. West and L. Griffin, Allometric Control of Human Gait, Fractals 6, 101 (1998).CrossRefGoogle Scholar
  43. [40]
    B. J. West, Physiology, Promiscuity and Prophecy at the Millennium: A Tale of Tails, Studies of Nonlinear Phenomena in the Life Sciences vol. 7, World Scientific, Singapore (1999).zbMATHGoogle Scholar
  44. [41]
    B. J. West and T. Nonnenmacher, An ant in a Gurge, Phys. Lett. A 278, 255 (2001).MathSciNetADSzbMATHCrossRefGoogle Scholar
  45. [42]
    B. J. West, R. Zhang, A. W. Sanders, S. Miniyar, J. H. Zucherman and B. D. Levine, Fractal fluctuations in Cardiac Time Series, Physica A 270, 522 (1999).ADSCrossRefGoogle Scholar
  46. [43]
    G. M. Zaslavsky, M. Edelman and B. A. Niyazov, Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics, Chaos 7, 159 (1997).MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2003

Authors and Affiliations

  • Bruce J. West
    • 1
  • Mauro Bologna
    • 2
  • Paolo Grigolini
    • 2
  1. 1.Department of the Army, U.S. Army Research LaboratoryArmy Research OfficeResearch Triangle ParkUSA
  2. 2.Department of PhysicsUniversity of North TexasDentonUSA

Personalised recommendations