Fractional Randomness

  • Bruce J. West
  • Mauro Bologna
  • Paolo Grigolini
Part of the Institute for Nonlinear Science book series (INLS)


The equations describing the evolution of complex physical phenomena can be put into a number of categories. This separation depends on whether the changes in the physical observables are relatively slow, regular, and describable by simple analytic functions, or if the changes are rapid, irregular, and not predictable, and therefore describable by fractal functions. Historically this led to the two categories of dynamics: deterministic equations of motion and stochastic equations of motion. However, since the early 1960s it has become increasingly clear that these two categories are not mutually exclusive, so other ways to draw distinctions among phenomena have become more popular.


Fractal Dimension Random Walk Fractional Brownian Motion Colored Noise Anomalous Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Allegrini, M. Barbi, P. Grigolini and B. J. West, Dynamical Model for DNA sequences, Phys. Rev. E 52, 5281–96 (1995).ADSCrossRefGoogle Scholar
  2. [2]
    V. I. Arnold, Russ. Math. Survey 18, 9 (1963).;ADSCrossRefGoogle Scholar
  3. [2a]
    V. I. Arnold ibid. 18, 85 (1963).ADSGoogle Scholar
  4. [3]
    J. B. Bassingthwaighte, L. S. Liebovitch and B. J. West, Fractal Physiology, Oxford University Press, Oxford (1994).Google Scholar
  5. [4]
    J. H. G. M. van Beek, S. A. Roger and J. B. Bassingthwaighre, Regional myocardial flow heterogeneity explained with fractal networks, Am. J. Physiol. 257, H1670–80 (1989).Google Scholar
  6. [5]
    J. Beran, Statistics of Long-Memory Processes, Monographs on Statistics and Applied Probability 61, Chapman & Hall, New York (1994).Google Scholar
  7. [6]
    M. Bologna, P. Grigolini and J. Riccardi, Lévy diffusion as an effect of sporadic randomness, Phys. Rev. E 60, 6435–6442 (1999).ADSCrossRefGoogle Scholar
  8. [7]
    O. V. Bychuk and B. O’Shaughnessy, Phys. Rev. Lett. 74, 1795 (1994);ADSCrossRefGoogle Scholar
  9. [7a]
    O. V. Bychuk and B. O’Shaughnessy J. Chem. Phys. 101, 772 (1994).ADSCrossRefGoogle Scholar
  10. [8]
    G. Doetsch, Theorie und Anwendungen der Laplace Transformation, Dover, New York, (reprint), (1945).Google Scholar
  11. [9]
    J. L. Doob, Stochastic Processes, John Wiley, New York (1953).zbMATHGoogle Scholar
  12. [10]
    K. Falconer, Fractal Geometry, John Wiley, New York (1990).zbMATHGoogle Scholar
  13. [11]
    P. Grassberger and I. Procaccia, Physica D 9, 189 (1983).MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. [12]
    J. M. Hausdorff, C. -K. Peng, Z. Ladin, J. Y. Wei and A. L. Goldberger, Is walking a random walk — Evidence for long-range correlations in stride interval of human gait, J. Appl. Physiol. 78, 349 (1995).Google Scholar
  15. [13]
    J. T. M. Hosking, Fractional Differencing, Biometrika 68, 165–178 (1981).MathSciNetzbMATHCrossRefGoogle Scholar
  16. [14]
    J. Klafter, G. Zumofen and M. F. Shlesinger, Lévy description of anomalous diffusion in dynamical systems, in Lévy Fights and Related Topics in Physics, M. F. Shlesinger, G. M. Zaslavsky and U. Frisch, eds., Springer, Berlin (1995).Google Scholar
  17. [15]
    J. Klafter, A. Blumen, G. Zumofen and M.F. Shlesinger, Physica A 168, 637 (1990).ADSCrossRefGoogle Scholar
  18. [16]
    A. N. Kolmogorov, Dokl. Adad. Nauk SSSR 98, 527 (1954).MathSciNetzbMATHGoogle Scholar
  19. [17]
    A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion, Springer-Verlag, New York (1983); L. E. Reichl, The Transition to Chaos, Springer-Verlag, New York (1992).Google Scholar
  20. [18]
    K. Lindenberg, K. E. Shuler, V. Seshadre and B. J. West, in Probabilistic Analysis and Related Topics, vol. 3, A.T. Bharucha-Reid, ed., Academic, New York (1983).Google Scholar
  21. [19]
    E. N. Lorenz, Deterministic nonperiodic flows, J. Atmos. Sci. 20, 130 (1963).ADSCrossRefGoogle Scholar
  22. [20]
    B. B. Mandelbrot and J. W. van Ness, Fractional Brownian motions, fractional noise and applications, SIAM Rev. 10, 422 (1968).MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. [21]
    B. B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman, San Francisco (1982).zbMATHGoogle Scholar
  24. [22]
    B. B. Mandelbrot, Fractals, Form, Chance and Dimension, W.H. Freeman, San Francisco (1977).zbMATHGoogle Scholar
  25. [23]
    R. M. May, Simple mathematical models with very complicated dynamics, Nature 261, 459 (1976).ADSCrossRefGoogle Scholar
  26. [24]
    G. Sugihara and R. M. May, Nature 344, 734 (1990);ADSCrossRefGoogle Scholar
  27. [24a]
    A. A. Tsonis and J. B. Eisner, Nature 358, 217 (1992);ADSCrossRefGoogle Scholar
  28. [24b]
    D. J. Wales, Nature 350, 485 (1991).ADSCrossRefGoogle Scholar
  29. [25]
    E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 (1965).MathSciNetADSCrossRefGoogle Scholar
  30. [26]
    E. W. Montroll and B. J. West, On an enriched collection of stochastic processes, in Fluctuation Phenomena, 61–206, E. W. Montroll and J. L. Lebowitz, eds., second edition, North-Holland Personal Library, North-Holland, Amsterdam (1987); first edition (1979).Google Scholar
  31. [27]
    E. W. Montroll and M. F. Shlesinger, On the wonderful world of random walks, in Nonequilibrium Phenomena II: From Stochastics to Hydrodynamics, 1–121, E. W. Montroll and J.. Lebowitz, eds., North-Holland, Amsterdam (1983).Google Scholar
  32. [28]
    J. Moser, Nachr. Akad. Wiss. Gottingen II, Math. Phys. Kd., 1 (1968).Google Scholar
  33. [29]
    E. Ott, Chaos in Dynamical Systems, Cambridge University Press, New York (1993).zbMATHGoogle Scholar
  34. [30]
    A. Ott, J. P. Bouchaud, D. Langevin and W. Urbach, Phys. Rev. Lett. 65, 2201 (1994).ADSCrossRefGoogle Scholar
  35. [31]
    C. K. Peng, S. Buldyrev, A. L. Goldberger, S. Havlin, F. Sciortino, M. Simons, and H. E. Stanley, Long-range correlations in nucleotide sequences, Nature 356, 168 (1992).ADSCrossRefGoogle Scholar
  36. [32]
    C. K. Peng, J. Mietus, J. M. Hausdorff, , S. Havlin, H. G. Stanley and A. L. Goldberger, Long-range anticorrelations and non-Gaussian behavior of the heartbeat, Phys. Rev. Lett 70, 1343 (1993).ADSCrossRefGoogle Scholar
  37. [33]
    H. Poincaré, The Foundations of Science, translated by J.M. Cattel, Science Press, New York (1929).zbMATHGoogle Scholar
  38. [34]
    S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach, New York (1993).zbMATHGoogle Scholar
  39. [35]
    P. Santini, Lévy scaling in random walks with fluctuating variance, Phys. Rev. E 61, 93 (2000).ADSCrossRefGoogle Scholar
  40. [36]
    M. Schroeder, Fractals, Chaos, Power Laws, W.H. Freeman, New York (1991).zbMATHGoogle Scholar
  41. [37]
    L. R. Taylor, Nature 189, 732 (1961).ADSCrossRefGoogle Scholar
  42. [38]
    J. Theiler, B. Goldrilsion, A. Longtin, S. Eubank and J. D. Farmer, in Nonlinear Modeling and Forecasting, 163, M. Casdagli and S. Eubank, eds., Addison-Wesley, New York (1992).Google Scholar
  43. [39]
    F. Turner, Forward to Chaos, Complexity and Sociology, R. A. Eve, S. Horsfall and M. E. Lee, eds., SAGE, Thousand Oaks (1997).Google Scholar
  44. [40]
    V. V. Uchaikin, Montroll-Weiss problem, fractional diffusion equations and stable distributions, Int. J. Theor. Phys. 39 (8), 2087–2105 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  45. [41]
    R. Voss, Evolution of long-range fractal correlations and 1/f-noise in DNA base sequences, Phys. Rev. Lett. 68, 3805 (1992).ADSCrossRefGoogle Scholar
  46. [42]
    G. H. Weiss and R. J. Rubin, Random walks: Theory and selected applications, Advances in Chemical Physics, vol. 52, eds. I. Prigogine and S.A. Rice, John Wiley, New York (1983).Google Scholar
  47. [43]
    B. J. West and V. Seshadri, Linear systems with Lévy fluctuations, Physica A 113, 203–216 (1982).MathSciNetADSCrossRefGoogle Scholar
  48. [44]
    B. J. West, R. Zhang, A. W. Sanders, S. Miniyar, J. H. Zucherman and B. D. Levine, Fractal fluctuations in transcranial Doppler signals, Phys. Rev. E 59, 1 (1999).CrossRefGoogle Scholar
  49. [45]
    B. J. West and L. Griffin, Allometric control, inverse power laws and human gait, Chaos, Solitons & Fractals 10, 1519 (1999);ADSzbMATHCrossRefGoogle Scholar
  50. [45a]
    Allometric control of human gait, Fractals 6, 101 (1998).Google Scholar
  51. [46]
    B. J. West, Physiology, Promiscuity and Prophecy at the Millennium: A Tale of Tails, Studies of Nonlinear Phenomena in the Life Sciences vol. 7, World Scientific, Singapore (1999).Google Scholar
  52. [47]
    B.J. West and T. Nonnenmacher, An ant in a gurge, Phys. Lett. A 278, 255 (2000).MathSciNetADSCrossRefGoogle Scholar
  53. [48]
    W. Zhang and B. J. West, Analysis and numerical computation of the dimension of colored noise and deterministic time series with power-law spectra, Fractals 4, 91 (1996).zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2003

Authors and Affiliations

  • Bruce J. West
    • 1
  • Mauro Bologna
    • 2
  • Paolo Grigolini
    • 2
  1. 1.Department of the Army, U.S. Army Research LaboratoryArmy Research OfficeResearch Triangle ParkUSA
  2. 2.Department of PhysicsUniversity of North TexasDentonUSA

Personalised recommendations