Fractional Fourier Transforms

  • Bruce J. West
  • Mauro Bologna
  • Paolo Grigolini
Part of the Institute for Nonlinear Science book series (INLS)


In the next few lectures we provide a brief overview of Fourier analysis and how it has been used to model lin- ear physical phenomena, particularly the reversible propagation of scalar waves in homogeneous media and the irreversible diffusion of one molecular species within another. The purpose of this review is to orient the reader so that the significance of wave propagation in fractal media will be apparent as will anom- alous diffusion. These latter topics have emerged in the last two decades as the natural successors of the phenomena examined in the 19th and early 20th centuries.


Wave Equation Fourier Series Delta Function Fractional Derivative Fractional Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Bologna, Derivata ad Indice Reale, Ets Editrice, Italy (1990).Google Scholar
  2. [2]
    A. L. Cauchy, Theorie de la propagation des ondes (Prix d’analyses mathe- matique), Concours de 1815 et de 1816, 140–2, 281–2.Google Scholar
  3. [3]
    P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press, Oxford (1953).Google Scholar
  4. [4]
    U. Frisch and G. Parisi, in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, M. Ghil, R. Benzi and G. Parisi, eds., North-Holland, Amsterdam (1985).Google Scholar
  5. [5]
    D. V. Giri, Dirac Delta Functions, unpublished report (1979).Google Scholar
  6. [6]
    H. Goldstein, Advanced Classical Mechanics, first edition, John Wiley, New York (1955).Google Scholar
  7. [7]
    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, corrected and enlarged edition, Academic, New York (1980).Google Scholar
  8. [8]
    M. Hermite, (Faculte des Sciences de Paris), 5 edition, 155, Paris (1891).zbMATHGoogle Scholar
  9. [9]
    O. Heaviside, Electromagnetic Theory, vol. II, 54–55 and 92, First issue 1893 and reissued London 1922.Google Scholar
  10. [10]
    D. D. Joseph and L. Preziosi, Rev. Mod. Phys. 61, 41 (1989).MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. [11]
    G. R. Kirchoff and S. B. Kon, Adad. Wiss, Berlin Vom. 22, 641, juni (1992)Google Scholar
  12. [11a]
    G. R. Kirchoff and S. B. Kon, Wied. Ann XVIII, 663 (1883).Google Scholar
  13. [12]
    M. J. Lighthill, Introduction to Fourier Analysis and Generalized Functions, Cambridge University Press, Cambridge (1964).Google Scholar
  14. [13]
    K. Lindenberg and B.J. West, The first, the biggest, and other such con- siderations, J. Stat. Phys. 42, 201 (1986).MathSciNetADSCrossRefGoogle Scholar
  15. [14]
    K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley, New York (1993).zbMATHGoogle Scholar
  16. [15]
    S. D. Poisson, Memoire sur la theorie des ondes (lu le 2 octobre et le 18 decembre 1815), 85–86.Google Scholar
  17. [16]
    S. G. Sainko, A. A. Kilbas and 0. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach, New York (1993).Google Scholar
  18. [17]
    J. A. Scales and R. Snieder, What is a wave?, Nature 401, 739 (1999).ADSCrossRefGoogle Scholar
  19. [18]
    W. Thomson, Trans. Roy. Soc. of Edinburgh, XXI, (May) (1854).Google Scholar
  20. [19]
    A. Zygmund, Trigonometric Series, vols. I and II combined, 2 edition, Cambridge University Press, Cambridge, MA (1977).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2003

Authors and Affiliations

  • Bruce J. West
    • 1
  • Mauro Bologna
    • 2
  • Paolo Grigolini
    • 2
  1. 1.Department of the Army, U.S. Army Research LaboratoryArmy Research OfficeResearch Triangle ParkUSA
  2. 2.Department of PhysicsUniversity of North TexasDentonUSA

Personalised recommendations