Physics of Fractal Operators pp 1-35 | Cite as

# Nondifferentiable Processes

- 1 Citations
- 417 Downloads

## Abstract

We emphasize at the outset that this is not a traditional text book. The authors do not think that modeling of the complex physical phenomena they have in mind is sufficiently well developed to warrant such a text. On the other hand, this is also not a research monograph, since it lacks the rigor that many would insist on, in such a treatment. So the book falls somewhere in between, resting on a set of lecture notes that have been polished and extended, with the view to providing insight into a new area of investigation in science, particularly in physics. The lectures present techniques from the calculus of fractional derivatives and integrals and fractional stochastic differential equations, but are not intended to form a book about mathematics. Instead of formal mathematics, we emphasize physical interpretation and highlight how to model complex physical phenomena, such as found in the world around us. The use of fractal functions and the applications of fractal operators, such as fractional derivatives and integrals applied to analytic functions, are investigated with a view towards modeling complex physical phenomena. Thus, although the material may appear formal at times, our purpose is to reveal the mechanisms underlying the complexity rather than to obscure them. Therefore we touch lightly on history and philosophy, in addition to physics and mathematics, where we think they can contribute to the discussion.

## Keywords

Fractional Derivative Fractional Calculus Langevin Equation Brownian Particle Markov Approximation## Preview

Unable to display preview. Download preview PDF.

## Bibliography

- [1]R. J. Abraham and C. D. Shaw,
*Dynamics - The Geometry of Behavior, Part 1*(1982), Aerial Press, Santa Cruz, CAGoogle Scholar - [1a]R. J. Abraham and C. D. Shaw,
*Dynamics - The Geometry of Behavior, Part 2*(1983), Aerial Press, Santa Cruz, CAGoogle Scholar - [1b]R. J. Abraham and C. D. Shaw,
*Dynamics - The Geometry of Behavior, Part 3*(1985), Aerial Press, Santa Cruz, CAGoogle Scholar - [1c]R. J. Abraham and C. D. Shaw,
*Dynamics - The Geometry of Behavior, Part 4*(1988), Aerial Press, Santa Cruz, CAzbMATHGoogle Scholar - [2]P. Allegrini, P. Grigolini and B. J. West, Dynamical approach to Lévy processes,
*Phys. Rev. E***54**, 4760–67 (1996).ADSCrossRefGoogle Scholar - [3]J. Beran,
*Statistics of Long-Memory Processes*, Monographs on Statistics and Applied Probability 61, Chapman & Hall, New York (1994).Google Scholar - [4]
- [5]M. Bologna, P. Grigolini and B. J. West,
*J. Chem. Phys.*(in press, 2002).Google Scholar - [6]L. Boltzmann,
*Lectures on the Principles of Mechanics, Vol.***1**, 66, Leipzig: Barth, (1987,1904).Google Scholar - [7]A. S. Chaves, Fractional diffusion equation to describe Lévy flights,
*Phys. Lett. A***239**, 13 (1998).MathSciNetADSzbMATHCrossRefGoogle Scholar - [8]A. Compte, Stochastic foundations of fractional dynamics,
*Phys. Rev. E***53**, 4191 (1996).ADSCrossRefGoogle Scholar - [9]J. L. Doob, The Brownian Movement and Stochastic Equations,
*Ann. Math.***43**, 351 (1942).MathSciNetADSzbMATHCrossRefGoogle Scholar - [10]G. W. Ford, M. Kac and P. Mazur,
*J. Math. Phys.*6, 504 (1965).MathSciNetADSzbMATHCrossRefGoogle Scholar - [11]U. Frisch and G. Parisi, in
*Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics*, edited by M. Ghil, R. Benzi and G. Parisi, North-Holland, Amsterdam (1985).Google Scholar - [12]D. V. Giri,
*Dirac Delta Functions*, unpublished report (1979).Google Scholar - [13]
- [14]W. G. Glöekle and T. F. Nonnenmacher, A fractional Calculus approach to self-similar protein dynamics,
*Biophys. J.***68**, 46–53 (1995).ADSCrossRefGoogle Scholar - [15]W. G. Glöckle and T. F. Nonnenmacher, Fox function representation of non-Debye relaxation processes,
*J. Stat. Phys.***71**, 741 (1993).ADSzbMATHCrossRefGoogle Scholar - [16]W. G. Glöckle and T. F. Nonnenmacher, Fractional relaxation and the time-temperature superposition principle,
*Rheol. Acta***33**, 337 (1994).CrossRefGoogle Scholar - [17]P. Grigolini, G. Grosso, G. Pastori-Parravicini, and M. Sparpaglione,
*Phys. Rev.***B27**, 7342 (1983).ADSGoogle Scholar - [18]P. Grigolini, A. Rocco and B. J. West, Fractional calculus as a macroscopic manifestation of randomness,
*Phys. Rev. E***59**, 2303–2306 (1999).ADSCrossRefGoogle Scholar - [19]J. T. M. Hosking, Fractional Differencing,
*Biometrika***68**, 165–178 (1981).MathSciNetzbMATHCrossRefGoogle Scholar - [20]B. D. Hughes,
*Random Walks and Random Environments, Vol. 1: Random Walks*, Oxford Science Publications, Clarendon Press, Oxford (1995).zbMATHGoogle Scholar - [21]L. P. Kadanoff, Fractals: Where’s the beef?,
*Physics Today*/Feb., 6 (1986).Google Scholar - [22]C. Lanczos,
*The Variational Principles of Mechanics*, 4th edition, Dover, New York (1970).zbMATHGoogle Scholar - [23]
- [24]
- [25]P. Lévy,
*Calcul des probabilities*, Guthier-Villars, Paris (1925);Google Scholar - [25a]P. Lévy,
*Théorie de l’addition des variables aléatoires*, Guthier-Paris (1937).Google Scholar - [26]K. Lindenberg and B. J. West,
*The Nonequilibrium Statistical Mechanics of Open and Closed Systems*, VCH, Berlin (1990).zbMATHGoogle Scholar - [27]K. Lindenberg, K. E. Shuler, V. Seshadre and B. J. West, in
*Probabilistic Analysis and Related Topics*, Vol. 3, A.T. Bharucha-Reid, ed., Academic Press, New York (1983).Google Scholar - [28]B. B. Mandelbrot,
*The Fractal Geometry of Nature*, W.H. Freeman, San Francisco (1982).zbMATHGoogle Scholar - [29]B. B. Mandelbrot,
*Fractals, form, chance and dimension*, W.H. Freeman, San Francisco (1977).zbMATHGoogle Scholar - [30]P. Meakin,
*Fractals, scaling and growth far from equilibrium*, Cambridge Nonlinear Science Series 5, Cambridge University Press, Cambridge, MA (1998).zbMATHGoogle Scholar - [31]E. W. Montroll and B. J. West, On an enriched collection of stochastic processes, in
*Fluctuation Phenomena*, pp.61–206, E.W. Montroll and J.L. Lebowitz, eds., second edition, North-Holland Personal Library, North-Holland, Amsterdam, 61–206 (1987);Google Scholar - [31a]E. W. Montroll and B. J. West, On an enriched collection of stochastic processes, in
*Fluctuation Phenomena*, pp.61–206, E.W. Montroll and J.L. Lebowitz, eds., first edition (1979).Google Scholar - [32]E. W. Montroll and M. F. Shlesinger, On the wonderful world of random walks, in
*Nonequilibrium Phenomena II: From Stochastics to Hydrodynamics*, pp. 1–121, E.W. Montroll and J.L. Lebowitz, eds., North-Holland, Amsterdam (1983).Google Scholar - [33]J. Perrin, Mouvement brownien et réalité moléculaire,
*Annales de chimie et de physique*VIII 18, 5–114: Translated by F. Soddy as*Brownian Movement and Molecular Reality*, Taylor and Francis, London (1925).Google Scholar - [34]L. F. Richardson, Atmospheric diffusion shown on a distance-neighbour graph,
*Proc. Roy. Soc. London*A**110**, 709–737 (1926).ADSCrossRefGoogle Scholar - [35]M. Schroeder,
*Fractals, Chaos, Power Laws*, W.H. Freeman, New York (1991).zbMATHGoogle Scholar - [36]W. R. Schneider and W. Wyss,
*J. Math. Phys.***30**, 134 (1989).MathSciNetADSzbMATHCrossRefGoogle Scholar - [37]M. F. Shlesinger, B. J. West and J. Klafter, Lévy dynamics for enhanced diffusion: an application to turbulence,
*Phys. Rev. Lett.***58**, 1100–03 (1987).MathSciNetADSCrossRefGoogle Scholar - [38]G. E. Uhlenbeck and L. S. Ornstein, On the theory of the Brownian motion,
*Phys. Rev.***36**, 823 (1930).ADSCrossRefGoogle Scholar - [39]
- [40]P.B. Gove, Ed.,
*Webster’s Third New International Dictionary*, G. & C. Merriam, Springfield, Mass. (1981).Google Scholar - [41]B. J. West and W. Deering, Fractal Physiology for Physicists: Lévy Statistics,
*Phys. Repts.***246**, 1–100 (1994).ADSCrossRefGoogle Scholar - [42]B. J. West, P. Grigolini, R. Metzler and T. F. Nonnenmacher, Fractal diffusion and Lévy stable processes,
*Phys. Rev. E***55**, 99 (1997).MathSciNetADSCrossRefGoogle Scholar - [43]B. J. West and P. Grigolini, Fractional differences, derivatives and fractal time series, in
*Applications of Fractional Calculus in Physics*, Ed. R. Hilfer, World Scientific, Singapore (1998).Google Scholar - [44]B. J. West,
*Physiology, Promiscuity and Prophecy at the Millennium: A Tale of Tails*, Studies of Nonlinear Phenomena in the Life Sciences Vol. 7, World Scientific, Singapore (1999).zbMATHGoogle Scholar - [45]K. Wilson, The renormalization group and critical phenomena, in
*Nobel Lectures Physics 1981–1990*, World Scientific, New Jersey (1993).Google Scholar - [46]G. M. Zaslavsky, M. Edelman and B. A. Niyazov, Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics,
*Chaos***7**, 159 (1997).MathSciNetADSzbMATHCrossRefGoogle Scholar - [47]R. W. Zwanzig, in
*Lectures in Theoretical Physics*, Boulder,**III**(1960) 106, Interscience, New York, (1961).Google Scholar