Nondifferentiable Processes

  • Bruce J. West
  • Mauro Bologna
  • Paolo Grigolini
Part of the Institute for Nonlinear Science book series (INLS)


We emphasize at the outset that this is not a traditional text book. The authors do not think that modeling of the complex physical phenomena they have in mind is sufficiently well developed to warrant such a text. On the other hand, this is also not a research monograph, since it lacks the rigor that many would insist on, in such a treatment. So the book falls somewhere in between, resting on a set of lecture notes that have been polished and extended, with the view to providing insight into a new area of investigation in science, particularly in physics. The lectures present techniques from the calculus of fractional derivatives and integrals and fractional stochastic differential equations, but are not intended to form a book about mathematics. Instead of formal mathematics, we emphasize physical interpretation and highlight how to model complex physical phenomena, such as found in the world around us. The use of fractal functions and the applications of fractal operators, such as fractional derivatives and integrals applied to analytic functions, are investigated with a view towards modeling complex physical phenomena. Thus, although the material may appear formal at times, our purpose is to reveal the mechanisms underlying the complexity rather than to obscure them. Therefore we touch lightly on history and philosophy, in addition to physics and mathematics, where we think they can contribute to the discussion.


Fractional Derivative Fractional Calculus Langevin Equation Brownian Particle Markov Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. J. Abraham and C. D. Shaw, Dynamics - The Geometry of Behavior, Part 1 (1982), Aerial Press, Santa Cruz, CAGoogle Scholar
  2. [1a]
    R. J. Abraham and C. D. Shaw, Dynamics - The Geometry of Behavior, Part 2 (1983), Aerial Press, Santa Cruz, CAGoogle Scholar
  3. [1b]
    R. J. Abraham and C. D. Shaw, Dynamics - The Geometry of Behavior, Part 3 (1985), Aerial Press, Santa Cruz, CAGoogle Scholar
  4. [1c]
    R. J. Abraham and C. D. Shaw, Dynamics - The Geometry of Behavior, Part 4 (1988), Aerial Press, Santa Cruz, CAzbMATHGoogle Scholar
  5. [2]
    P. Allegrini, P. Grigolini and B. J. West, Dynamical approach to Lévy processes, Phys. Rev. E 54, 4760–67 (1996).ADSCrossRefGoogle Scholar
  6. [3]
    J. Beran, Statistics of Long-Memory Processes, Monographs on Statistics and Applied Probability 61, Chapman & Hall, New York (1994).Google Scholar
  7. [4]
    M. Berry, Diffractals, J. Phys. A: Math. Gen. 12, 781–797 (1979).ADSCrossRefGoogle Scholar
  8. [5]
    M. Bologna, P. Grigolini and B. J. West, J. Chem. Phys. (in press, 2002).Google Scholar
  9. [6]
    L. Boltzmann, Lectures on the Principles of Mechanics, Vol. 1, 66, Leipzig: Barth, (1987,1904).Google Scholar
  10. [7]
    A. S. Chaves, Fractional diffusion equation to describe Lévy flights, Phys. Lett. A 239, 13 (1998).MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. [8]
    A. Compte, Stochastic foundations of fractional dynamics, Phys. Rev. E 53, 4191 (1996).ADSCrossRefGoogle Scholar
  12. [9]
    J. L. Doob, The Brownian Movement and Stochastic Equations, Ann. Math. 43, 351 (1942).MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. [10]
    G. W. Ford, M. Kac and P. Mazur, J. Math. Phys. 6, 504 (1965).MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. [11]
    U. Frisch and G. Parisi, in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, edited by M. Ghil, R. Benzi and G. Parisi, North-Holland, Amsterdam (1985).Google Scholar
  15. [12]
    D. V. Giri, Dirac Delta Functions, unpublished report (1979).Google Scholar
  16. [13]
    W. G. Glöekle and T. F. Nonnenmacher, Macromolecules 24, 6426 (1991).ADSCrossRefGoogle Scholar
  17. [14]
    W. G. Glöekle and T. F. Nonnenmacher, A fractional Calculus approach to self-similar protein dynamics, Biophys. J. 68, 46–53 (1995).ADSCrossRefGoogle Scholar
  18. [15]
    W. G. Glöckle and T. F. Nonnenmacher, Fox function representation of non-Debye relaxation processes, J. Stat. Phys. 71, 741 (1993).ADSzbMATHCrossRefGoogle Scholar
  19. [16]
    W. G. Glöckle and T. F. Nonnenmacher, Fractional relaxation and the time-temperature superposition principle, Rheol. Acta 33, 337 (1994).CrossRefGoogle Scholar
  20. [17]
    P. Grigolini, G. Grosso, G. Pastori-Parravicini, and M. Sparpaglione, Phys. Rev. B27, 7342 (1983).ADSGoogle Scholar
  21. [18]
    P. Grigolini, A. Rocco and B. J. West, Fractional calculus as a macroscopic manifestation of randomness, Phys. Rev. E 59, 2303–2306 (1999).ADSCrossRefGoogle Scholar
  22. [19]
    J. T. M. Hosking, Fractional Differencing, Biometrika 68, 165–178 (1981).MathSciNetzbMATHCrossRefGoogle Scholar
  23. [20]
    B. D. Hughes, Random Walks and Random Environments, Vol. 1: Random Walks, Oxford Science Publications, Clarendon Press, Oxford (1995).zbMATHGoogle Scholar
  24. [21]
    L. P. Kadanoff, Fractals: Where’s the beef?, Physics Today /Feb., 6 (1986).Google Scholar
  25. [22]
    C. Lanczos, The Variational Principles of Mechanics, 4th edition, Dover, New York (1970).zbMATHGoogle Scholar
  26. [23]
    P. Langevin, C.R. Acad. Sci. 530, Paris (1908).Google Scholar
  27. [24]
    M. H. Lee, Phys. Rev. Lett. 51 (1983) 1227.ADSCrossRefGoogle Scholar
  28. [25]
    P. Lévy, Calcul des probabilities, Guthier-Villars, Paris (1925);Google Scholar
  29. [25a]
    P. Lévy, Théorie de l’addition des variables aléatoires, Guthier-Paris (1937).Google Scholar
  30. [26]
    K. Lindenberg and B. J. West, The Nonequilibrium Statistical Mechanics of Open and Closed Systems, VCH, Berlin (1990).zbMATHGoogle Scholar
  31. [27]
    K. Lindenberg, K. E. Shuler, V. Seshadre and B. J. West, in Probabilistic Analysis and Related Topics, Vol. 3, A.T. Bharucha-Reid, ed., Academic Press, New York (1983).Google Scholar
  32. [28]
    B. B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman, San Francisco (1982).zbMATHGoogle Scholar
  33. [29]
    B. B. Mandelbrot, Fractals, form, chance and dimension, W.H. Freeman, San Francisco (1977).zbMATHGoogle Scholar
  34. [30]
    P. Meakin, Fractals, scaling and growth far from equilibrium, Cambridge Nonlinear Science Series 5, Cambridge University Press, Cambridge, MA (1998).zbMATHGoogle Scholar
  35. [31]
    E. W. Montroll and B. J. West, On an enriched collection of stochastic processes, in Fluctuation Phenomena, pp.61–206, E.W. Montroll and J.L. Lebowitz, eds., second edition, North-Holland Personal Library, North-Holland, Amsterdam, 61–206 (1987);Google Scholar
  36. [31a]
    E. W. Montroll and B. J. West, On an enriched collection of stochastic processes, in Fluctuation Phenomena, pp.61–206, E.W. Montroll and J.L. Lebowitz, eds., first edition (1979).Google Scholar
  37. [32]
    E. W. Montroll and M. F. Shlesinger, On the wonderful world of random walks, in Nonequilibrium Phenomena II: From Stochastics to Hydrodynamics, pp. 1–121, E.W. Montroll and J.L. Lebowitz, eds., North-Holland, Amsterdam (1983).Google Scholar
  38. [33]
    J. Perrin, Mouvement brownien et réalité moléculaire, Annales de chimie et de physique VIII 18, 5–114: Translated by F. Soddy as Brownian Movement and Molecular Reality, Taylor and Francis, London (1925).Google Scholar
  39. [34]
    L. F. Richardson, Atmospheric diffusion shown on a distance-neighbour graph, Proc. Roy. Soc. London A 110, 709–737 (1926).ADSCrossRefGoogle Scholar
  40. [35]
    M. Schroeder, Fractals, Chaos, Power Laws, W.H. Freeman, New York (1991).zbMATHGoogle Scholar
  41. [36]
    W. R. Schneider and W. Wyss, J. Math. Phys. 30, 134 (1989).MathSciNetADSzbMATHCrossRefGoogle Scholar
  42. [37]
    M. F. Shlesinger, B. J. West and J. Klafter, Lévy dynamics for enhanced diffusion: an application to turbulence, Phys. Rev. Lett. 58, 1100–03 (1987).MathSciNetADSCrossRefGoogle Scholar
  43. [38]
    G. E. Uhlenbeck and L. S. Ornstein, On the theory of the Brownian motion, Phys. Rev. 36, 823 (1930).ADSCrossRefGoogle Scholar
  44. [39]
    L. Van Hove, Physica 21 (1955) 517.MathSciNetzbMATHCrossRefGoogle Scholar
  45. [40]
    P.B. Gove, Ed., Webster’s Third New International Dictionary, G. & C. Merriam, Springfield, Mass. (1981).Google Scholar
  46. [41]
    B. J. West and W. Deering, Fractal Physiology for Physicists: Lévy Statistics, Phys. Repts. 246, 1–100 (1994).ADSCrossRefGoogle Scholar
  47. [42]
    B. J. West, P. Grigolini, R. Metzler and T. F. Nonnenmacher, Fractal diffusion and Lévy stable processes, Phys. Rev. E 55, 99 (1997).MathSciNetADSCrossRefGoogle Scholar
  48. [43]
    B. J. West and P. Grigolini, Fractional differences, derivatives and fractal time series, in Applications of Fractional Calculus in Physics, Ed. R. Hilfer, World Scientific, Singapore (1998).Google Scholar
  49. [44]
    B. J. West, Physiology, Promiscuity and Prophecy at the Millennium: A Tale of Tails, Studies of Nonlinear Phenomena in the Life Sciences Vol. 7, World Scientific, Singapore (1999).zbMATHGoogle Scholar
  50. [45]
    K. Wilson, The renormalization group and critical phenomena, in Nobel Lectures Physics 1981–1990, World Scientific, New Jersey (1993).Google Scholar
  51. [46]
    G. M. Zaslavsky, M. Edelman and B. A. Niyazov, Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics, Chaos 7, 159 (1997).MathSciNetADSzbMATHCrossRefGoogle Scholar
  52. [47]
    R. W. Zwanzig, in Lectures in Theoretical Physics, Boulder, III (1960) 106, Interscience, New York, (1961).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2003

Authors and Affiliations

  • Bruce J. West
    • 1
  • Mauro Bologna
    • 2
  • Paolo Grigolini
    • 2
  1. 1.Department of the Army, U.S. Army Research LaboratoryArmy Research OfficeResearch Triangle ParkUSA
  2. 2.Department of PhysicsUniversity of North TexasDentonUSA

Personalised recommendations