Skip to main content

Activity—Gating Attentional Networks

  • Chapter
Book cover Models of Neural Networks IV

Part of the book series: Physics of Neural Networks ((NEURAL NETWORKS))

Abstract

In the visual system, “attention” selectively enhances and expedites the processing of a subset of the available stimuli vs. the rest. Attention can be directed to many different feature dimensions, such as location, form, color, texture and direction of movement. In this work, we present a model of attentional processing that makes extensive use of the feedforward, lateral and feedback connections known to exist in the visual cortex. The model uses local modulations of the activity of neuronal ensembles to superpose additional saliency and attentional information on top of the sensory data. The additional signals “gate” the information through the entire network and trigger response competition, resulting in an attentional concentration of the processing resources. At the network level, the model consists of two complementary information counterstreams that process separately sensory and attentional data: A sensory, feedforward stream directly analyses the features available in the stimulus, while an attentional stream provides expectations and global hypotheses about the stimulus. We explain the function of such a network as a hypothesis generating and confirming system. We also explain the architecture, components and dynamics necessary for the implementation of such an activity-gating network. The goal is to arrive at a consistent and unified model of attentional processing in the visual system that explains the different types of attention within a single framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Alais, R. Blake, and S.-H. Lee. Visual features that vary together over time group together over space. Nature Neuroscience,1(2):160164, 1998.

    Google Scholar 

  2. H.-U. Bauer. Is there parallel binding of distributed objects? Preprint, 1994.

    Google Scholar 

  3. D. E. Broadbent. Task combination and selective intake of information. Acta Psychologia, 50: 253 - 290, 1982.

    Article  Google Scholar 

  4. A. Chauduri. Modulation of the motion aftereffect by selective attention. Nature, 344: 60 - 62, 1990.

    Article  Google Scholar 

  5. F. Crick. Function of the thalamic reticular complex: the searchlight hypothesis. PNAS, 81: 4586 - 4590, 1984.

    Google Scholar 

  6. F. Crick and C. Koch. Constraints on cortical and thalamic projections: the no—strong—loops hypothesis. Nature, 391: 245 - 250, 1998.

    Article  Google Scholar 

  7. R. Desimone. Neural circuits for visual attention in the primate brain. In G. A. Carpenter and S. Grossberg, editors, Neural Networks for Vision and Image Processing, Bradford Book, pages 344 - 364. MIT Press, Cambridge, Massachusetts, 1992.

    Google Scholar 

  8. R. Desimone and J. Duncan. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci., 18: 193 - 222, 1995.

    Article  Google Scholar 

  9. J. Duncan and G. W. Humphreys. Visual search and stimulus similarity. Psychol. Rev., 96: 433 - 458, 1989.

    Article  Google Scholar 

  10. R. Eckhorn, H. J. Reitboeck, M. Arndt, and P. Dicke. Feature linking via synchronization among distributed assemblies: Simulations of results from cat visual cortex. Neural Comput., 2: 293 - 307, 1990.

    Google Scholar 

  11. C. W. Eriksen. Attentional search of the visual field. In B. David, editor, International Conference on Visual Search,pages 3-19, 4 John St., London, WC1N 2ET, 1988. Taylor and Francis Ltd.

    Google Scholar 

  12. C. W. Eriksen and J. D. St. James. Visual attention within and around the field of focal attention: A zoom lens model. Percept. Psychophys., 40: 225 - 240, 1986.

    Article  Google Scholar 

  13. D. J. Felleman and D. C. van Essen. Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1: 1 - 47, 1991.

    Article  Google Scholar 

  14. S. P Gandhi, D. J. Heeger, and G. M. Boynton. Spatial attention affects brain activity in human primary visual cortex. PNAS, pages 3314 - 3319, 1999.

    Google Scholar 

  15. W. Gerstner. Populations of Spiking Neurons, chapter 10, pages 261296. MIT Press, Cambridge, MA, 1998.

    Google Scholar 

  16. W. Gerstner and J. L. van Hemmen. Coding and information processing in neural networks. In E. Domany, J. L. van Hemmen, and K. Schulten, editors, Models of Neural Networks II, pages 1 - 93, Berlin, 1994. Springer.

    Chapter  Google Scholar 

  17. W. Gerstner, J. L. van Hemmen, and J. D. Cowan. What matters in neuronal locking? Neural Comput., 8 (8): 1653 - 1676, 1996.

    Google Scholar 

  18. C. M. Gray and D. A. McCormick. Chattering cells: Superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science, 274: 109 - 113, 1996.

    Article  Google Scholar 

  19. D. O. Hebb. The Organization of Behavior. Wiley, New York, 1949.

    Google Scholar 

  20. S. Herculano-Houzel, M. H. J. Munk, S. Neuenschwander, and W. Singer. Precisely synchronized oscillatory firing patterns require electroencephalographic activation. The Journal of Neuroscience,19(10):3992-4010, 1999. 310 J. Eggert and J. L. van Hemmen

    Google Scholar 

  21. J. M. Hupé, A. C. James, B. R. Payne, S. G. Lomber, P. Girard, and J. Bullier. Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature, 394: 784 - 787, 1998.

    Article  Google Scholar 

  22. W. James. The Principles of Psychology, volume 1. Henry Holt, New York, 1890.

    Book  Google Scholar 

  23. B. Julesz. Toward an axiomatic theory of preattentive vision. In G. M. Edelman, W. E. Gall, and W. M. Cowan, editors, Dynamic Aspects of Neocortical Function, pages 585-612. Neurosciences Research Foundation, 1984.

    Google Scholar 

  24. R. Kempter, W. Gerstner, J. L. van Hemmen, and H. Wagner. Extracting oscillations: Neuronal coincidence detection with noisy periodic spike input. Neural Comput., 10: 1987 - 2017, 1998.

    Google Scholar 

  25. C. Koch and T. Poggio. Multiplying with synapses and neurons. In T. McKenna, J. Davis, and S. F. Zornetzer, editors, Single Neuron Computation, pages 315 - 345. Academic Press, London, 1992.

    Google Scholar 

  26. P. König, A. K. Engel, P. R. Roelfsema, and W. Singer. How precise is neuronal synchronisation? Neural Comput., 7: 469 - 485, 1995.

    Google Scholar 

  27. M. J. M. Lankheet and F. A. J. Verstraten. Attentional modulation of adaptation to two-component transparent motion. Vision Res., 35: 1491 - 1412, 1995.

    Google Scholar 

  28. S.-H. Lee and R. Blake. Visual form created solely from temporal structure. Science, 284: 1165 - 1168, 1999.

    Article  Google Scholar 

  29. P. McLeod, J. Drive, and J. Crisp. Visual search for a conjunction of movement and form is parallel. Nature, 332: 154 - 155, 1988.

    Article  Google Scholar 

  30. J. Moran and R. Desimone. Selective attention gates visual processing in the extrastriate cortex. Science, 229: 782 - 784, 1985.

    Article  Google Scholar 

  31. B. C. Motter. Neural correlates of feature selective memory and pop-out in extrastriate area V4. Journal of Neuroscience, 14: 2190 - 2199, 1994.

    Google Scholar 

  32. T. D. Murphy and C. W. Eriksen. Temporal changes in the distribution of attention in the visual field in response to precues. Perception and Psychophysics, 42: 576 - 586, 1987.

    Article  Google Scholar 

  33. E. Niebur and C. Koch. A model for the neuronal implementation of selective visual attention based on temporal correlation among neurons. Journal of Computational Neuroscience, 1 (1): 141 - 158, 1994.

    Article  Google Scholar 

  34. E. Niebur, C. Koch, and C. Rosin. An oscillation-based model for the neural basis of attention. Vision Research, 33: 2789 - 2802, 1993.

    Article  Google Scholar 

  35. K. M. O'Craven, B. R. Rosen, K. K. Kwong, A. Treisman, and R. L. Savoy. Voluntary attention modulates fMRlactivity in human MT-MST. Neuron, 18: 591 - 598, 1997.

    Article  Google Scholar 

  36. D. R. Patzwahl, U. J. Ilg, and S. Treue. Switching attention between transparent motion components modulates responses of MT and MST neurons. Soc. Neurosci. Abstr., 24: 649, 1998.

    Google Scholar 

  37. M. I. Posner. Orienting of attention. Q. J. Exp. Psychol., 32: 3 - 25, 1980.

    Article  Google Scholar 

  38. J. H. Reynolds, L. Chelazzi, and R. Desimone. Competitive mechanisms subserve attention in macaque areas V2 and V4. The Journal of Neuroscience, 19 (5): 1736 - 1753, 1999.

    Google Scholar 

  39. K. S. Rockland and D. N. Pandya. Laminar origins and termination of cortical connections of the occipital lobe in the rhesus monkey. Brain Research, 179: 3 - 20, 1979.

    Article  Google Scholar 

  40. P. R. Roelfsema, V. A. F. Lamme, and H. Spekreijse. Object-based attention in the primary visual cortex of the macaque monkey. Nature, 395: 376 - 381, 1998.

    Article  Google Scholar 

  41. S. M Sherman and R. W. Guillery. On the actions that one nerve cell can have on another: Distinguishing "drivers" from "modulators". PNAS, 95: 7121 - 7126, 1998.

    Google Scholar 

  42. W. Singer and C. M. Gray. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci, 18: 555 - 586, 1995.

    Article  Google Scholar 

  43. D. C. Somers, A. M. Dale, A. E. Seifert, and R. B. H. Tootell. Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. PNAS, 96: 1663 - 1668, 1999.

    Google Scholar 

  44. E. A. Stern, D. Jaeger, and C. J. Wilson. Membrane potential synchrony of simoultaneously recorded striatal spiniy neurons in vivo. Nature, 394: 475 - 478, 1998.

    Article  Google Scholar 

  45. Y. Sugase, S. Yamane, S. Ueno, and K. Kawano. Global and fine information coded by single neurons in the temporal visual cortex. Nature, 400: 869 - 873, 1999.

    Article  Google Scholar 

  46. A. Treisman and G. Gelade. A feature—integration theory of attention. Cognitive Psychology, 12: 97 - 136, 1980.

    Article  Google Scholar 

  47. A. Treisman and H. Schmidt. Illusory conjunctions in the perception of objects. Cognitive Psychology, 14: 107 - 141, 1982.

    Article  Google Scholar 

  48. S. Treue and J. H. R. Maunsell. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature, 382: 539541, 1996.

    Google Scholar 

  49. S. Treue and J. H. R. Maunsell. Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. The Journal of Neuroscience, 19 (17): 7591 - 7602, 1999.

    Google Scholar 

  50. S. Treue and M. Trujillo. Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399: 575 - 579, 1999.

    Article  Google Scholar 

  51. Sh. Ullman. Sequence seeking and counterstreams: A model of bidirectional information flow in the cortex. In C. Koch and J. L. Davis, editors, Large-Scale Neuronal Theories of the Brain, chapter 12, pages 257 - 270. MIT Press, Cambridge, Massachusetts, 1994.

    Google Scholar 

  52. M. Valdez-Sosa, M. A. Bobes, V. Rodriguez, and T. Pinilla. Switching attention without shifting the spotlight: Object-based attentional modulation of brain potentials. J. Cog. Neurosci., 10: 137 - 151, 1998.

    Article  Google Scholar 

  53. D. C. van Essen, C. H. Anderson, and D. J. Felleman. Information processing in the primate visual cortex: An integrated systems perspective. Science, 255: 419 - 423, 1992.

    Article  Google Scholar 

  54. D. C. van Essen and E. A. DeYoe. Concurrent processing in the primate visual cortex. In M. S. Gazzaniga, editor, The Cognitive Neurosciences, chapter 24, pages 383 - 400. MIT Press, Cambridge, MA, 1995.

    Google Scholar 

  55. D. C. van Essen and J. H. R. Maunsell. Hierarchical organization and functional streams in the visual cortex. Vision Research, 24: 429 - 448, 1983.

    Article  Google Scholar 

  56. J. M. Wolfe, K. R. Cave, and S. L. Franzel. Guided search: An alternative to the feature integration model for visual search. J. Exp. Psychol., 15: 419 - 433, 1989.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eggert, J., van Hemmen, J.L. (2002). Activity—Gating Attentional Networks. In: van Hemmen, J.L., Cowan, J.D., Domany, E. (eds) Models of Neural Networks IV. Physics of Neural Networks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21703-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21703-1_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2875-7

  • Online ISBN: 978-0-387-21703-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics