On Cellular Automaton Approaches to Modeling Biological Cells

  • Mark S. Alber
  • Maria A. Kiskowski
  • James A. Glazier
  • Yi Jiang
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 134)

Abstract

We discuss two different types of Cellular Automata (CA): lattice-gas-based cellular automata (LGCA) and the cellular Potts model (CPM), and describe their applications in biological modeling.

LGCA were originally developed for modeling ideal gases and fluids. We describe several extensions of the classical LGCA model to self-driven biological cells. In particular, we review recent models for rippling in myxobacteria, cell aggregation, swarming, and limb bud formation. These LGCA-based models show the versatility of CA in modeling and their utility in addressing basic biological questions.

The CPM is a more sophisticated CA, which describes individual cells as extended objects of variable shape. We review various extensions to the original Potts model and describe their application to morphogenesis; the development of a complex spatial structure by a collection of cells. We focus on three phenomena: cell sorting in aggregates of embryonic chicken cells, morphological development of the slime mold Dictyostelium discoideum and avascular tumor growth. These models include intercellular and extracellular interactions, as well as cell growth and death.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Adam and N. Bellomo, A survey of models for tumor-immune system dynamics, Birkhauser, Boston, 1997.MATHGoogle Scholar
  2. [2]
    A. Adamatzky and O. Holland, Phenomenology of excitation in 2-D cellular automata and swarm systems, Chaos Solitons Fractals, 9 (1998), pp. 1233–1265.MathSciNetMATHGoogle Scholar
  3. [3]
    M. Alber and M. Kiskowski, On aggregation in CA models in biology, J. Phys. A: Math. Gen., 34 (2001), pp. 10707–10714.MathSciNetMATHGoogle Scholar
  4. [4]
    M. Alber, M. Kiskowski, and Y. Jiang, A model of rippling and aggregation in Myxobacteria, 2002 preprint.Google Scholar
  5. [5]
    B. Alberts, M. Raff, J. Watson, K. Roberts, D. Bray, and J. Lewis, Molecular biology of the cell, 3rd edition. Garland Publishing, NY, 1994.Google Scholar
  6. [6]
    J. Ashkin and E. Teller, Statistics of two-dimensional lattices with four components, Phys. Rev., 64 (1943), pp. 178–184.Google Scholar
  7. [7]
    E. Ben-Jacob, I. Cohen, A. Czirk, T. Vicsek, and D.L. Gutnick, Chemo-modulation of cellular movement, collective formation of vortices by swarming bacteria, and colonial development, Physica A, 238 (1997), pp. 181–197.Google Scholar
  8. [8]
    E. Ben-Jacob and H. Levine, The artistry of microorganisms, Scientific American, 279 (1998), pp. 82–87.Google Scholar
  9. [9]
    E. Ben-Jacob, I. Cohen, and H. Levine, Cooperative self-organization of microorganisms, Advances in Physics, 49 (2000), pp. 395–554.Google Scholar
  10. [10]
    L. Besseau and M. Giraud-Guille, Stabilization of ßuid cholesteric phases of collagen to ordered gelated matrices, J. Mol. Bio., 251 (1995), pp. 137–145.Google Scholar
  11. [11]
    D. Beysens, G. Forgacs, and J.A. Glazier, Cell sorting is analogous to phase ordering in fluids, Proc. Natl. Acad. Sci. USA 97 (2000) pp. 9467–9471.Google Scholar
  12. [12]
    H. Bode, K. Flick, and G. Smith, Regulation of interstitial cell-differentiation in Hydra attenuata. I. Homeostatic control of interstitial cell-population size, J. Cell Sci., 20 (1976), pp. 29–46.Google Scholar
  13. [13]
    E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence: From natural to artificial systems, Oxford University Press, NY, 1999.MATHGoogle Scholar
  14. [14]
    J. Boon., D. Dab, R. Kapral, and A. Lawniczak, Lattice gas automata for relative systems, Physics Reports, 273 (1996), pp. 55–147.MathSciNetGoogle Scholar
  15. [15]
    U. Börner, A. Deutsch, H. Reichenbach, and M. Bar, Rippling patterns in aggregates of myxobacteria arise from cell-cell collisions, 2002 preprint.Google Scholar
  16. [16]
    H. Bussemaker, A. Deutsch, and E. Geigant, Mean-field analysis of a dynamical phase transition in a cellular automaton model for collective motion, Phys. Rev. Lett., 78 (1997), pp. 5018–5027.Google Scholar
  17. [17]
    M. Caterina and P. Devreotes, Molecular insights into eukaryotic Chemotaxis, FASEB J., 5 (1991), pp. 3078–3085.Google Scholar
  18. [18]
    S. Chen, S.P. Dawson, G.D. Doolen, D.R. Janecky, and A. Lawniczak, Lattice methods and their applications to reacting systems. Computers & Chemical Engineering, 19 (1995), pp. 617–646.Google Scholar
  19. [19]
    B. Chopard and M. Droz, Cellular automata modeling of physical systems, Cambridge University Press, NY, 1998.MATHGoogle Scholar
  20. [20]
    L Cohen, LG. Ron, and E. Ben-Jacob, From branching to nebula patterning during colonial development of the Paenibacillus alvei bacteria, Physica A, 286 (2000), pp. 321–336.Google Scholar
  21. [21]
    J. Cook, Waves of alignment in populations of interacting, oriented individuals. Forma, 10 (1995), pp. 171–203.MathSciNetMATHGoogle Scholar
  22. [22]
    J. Cook, A. Deutsch, and A. Mogilner, Models for spatio-angular self-organization in cell biology, in W. Alt, A. Deutsch and G. Dunn (Eds.) Dynamics of cell and tissue motion, Birkhuser, Basel, Switzerland, 1997, pp. 173–182.Google Scholar
  23. [23]
    M. Cross and P. Hohenberg, Pattern-formation outside of equilibrium, Rev. Mod. Phys., 65 (1993), pp. 851–1112.Google Scholar
  24. [24]
    A. Czirok, A. L. Barabasi, and T. Vicsek, Collective motion of organisms in three dimensions, Phys. Rev. Lett., 82 (1999), pp. 209–212.Google Scholar
  25. [25]
    J. Dallon and J. Sherratt, A mathematical model for spatially varying extra cellular matrix alignment, SIAM J. Appl. Math., 61 (2000), pp. 506–527.MathSciNetMATHGoogle Scholar
  26. [26]
    L.A. Davidson, M.A.R. Koehl, R. Keller, and G.F. Oster, How do sea-urchins invaginate — Using biomechanics to distinguish between mechanisms of primary invagination, Development, 121 (1995), pp. 2005–2018.Google Scholar
  27. [27]
    A.M. Delprato, A. Samadani, A. Kudrolli, and L.S. Tsimring, Swarming ring patterns in bacterial colonies exposed to ultraviolet radiation, Phys. Rev. Lett., 87 (2001), 158102.Google Scholar
  28. [28]
    A. Deutsch, Towards analyzing complex swarming patterns in biological systems with the help of lattice-gas automaton model, J. Biol. Syst., 3 (1995), pp. 947–955.Google Scholar
  29. [29]
    A. Deutsch, Orientation-induced pattern formation: Swarm dynamics in a lattice-gas automaton model. Int. J. Bifurc. Chaos, 6 (1996), pp. 1735–1752.MATHGoogle Scholar
  30. [30]
    A. Deutsch, Principles of morphogenetic motion: swarming and aggregation viewed as self-organization phenomena, J. Biosc., 24 (1999), pp. 115–120.Google Scholar
  31. [31]
    A. Deutsch, Probabilistic lattice models of collective motion and aggregation: from individual to collective dynamics, Mathematical Biosciences, 156 (1999), pp. 255–269.MathSciNetMATHGoogle Scholar
  32. [32]
    A. Deutsch, A new mechanism of aggregation in a lattice-gas cellular automaton model. Mathematical and Computer Modeling, 31 (2000), pp. 35–40.MathSciNetMATHGoogle Scholar
  33. [33]
    A. Deutsch and S. Dormann, Cellular automata and biological pattern formation modeling, 2002 preprint.Google Scholar
  34. [34]
    S. Dormann, Pattern formation in cellular automation models, Dissertation, Angewandte Systemwissenschaft FB Mathematik/Informatik, Universität Osnabrück, Austria, 2000.Google Scholar
  35. [35]
    S. Dormann, A. Deutsch, and A. Lawniczak, Fourier analysis of Turing-like pattern formation in cellular automaton models. Future Computer Generation Systems, 17 (2001), pp. 901–909.MATHGoogle Scholar
  36. [36]
    S. Dormann and A. Deutsch, Modeling of self-organized avascular tumor growth with a hybrid cellular automaton, Silico Biology, 2 (2002), 0035.Google Scholar
  37. [37]
    D. Drasdo and G. Forgacs, Modeling the interplay of generic and genetic mechanisms in cleavage, blastulation, and gastrulation, Developmental Dynamics, 219 (2000), pp. 182–191.Google Scholar
  38. [38]
    M. Dworkin and D. Kaiser, Myxobacteria II, American Society for Microbiology, Washington, DC, 1993.Google Scholar
  39. [39]
    M. Dworkin Recent advances in the social and developmental biology of the myxobacteria, Microbiol. Rev., 60 (1996), pp. 70–102.Google Scholar
  40. [40]
    M. Eden, Vol. 4: Contributions to biology and problems of medicine, in J. Neyman (Ed.), Proceedings of the Fourth Berkeley Symposium in Mathematics, Statistics and Probability, University of California Press, Berkeley, 1961, pp. 223–239.Google Scholar
  41. [41]
    R. Engelhardt, Modeling pattern formation in reaction diffusion systems. Master’s Thesis, Dept. of Chemistry, University of Copenhagen, Denmark, 1994.Google Scholar
  42. [42]
    G. Ermentrout and L. Edelstein-Keshet, Cellular automata approach in biological modeling, J. Theor. Biol., 160 (1993), pp. 97–133.Google Scholar
  43. [43]
    S.E. Esipov and J.A. Shapiro, Kinetic model of Proteus mirabilis swarm colony development, J. Math. Biol., 36 (1998), pp. 249–268.MathSciNetMATHGoogle Scholar
  44. [44]
    M. Fontes and D. Kaiser, Myxococcus cells respond to elastic forces in their substrate, Proc. Natl. Acad. Sci. USA, 96 (1999), pp. 8052–8057.Google Scholar
  45. [45]
    G. Forgacs, R. Foty, Y. Shafrir, and M. Steinberg, Viscoelastic properties of living embryonic tissues: a quantitative study, Biophys. J., 74 (1998), pp. 2227–2234.Google Scholar
  46. [46]
    R. Foty, G. Forgacs, C. Pfleger, and M. Steinberg, Liquid properties of embryonic tissues: measurements of interfacial tensions, Phys. Rev. Lett., 72 (1994), pp. 2298–2300.Google Scholar
  47. [47]
    R. Foty, C. Pfleger, G. Forgacs, and M. Steinberg, Surface tensions of embryonic tissues predict their mutual envelopment behavior, Development, 122 (1996), pp. 1611–1620.Google Scholar
  48. [48]
    J. Freyer and R. Sutherland, Selective dissociation and characterization of cells from different regions of multicell spheroids during growth. Cancer Research, 40 (1980), pp. 3956–3965.Google Scholar
  49. [49]
    J. Freyer and R. Sutherland, Regulation of growth saturation and development of necrosis in EMT6/RO multicellular spheroids induced by the glucose and oxygen supply. Cancer Research, 46 (1986), pp. 3504–3512.Google Scholar
  50. [50]
    M. Gardner, The fantastic combinations of John Conway’s new solitaire game ’life’. Scientific American, 223 (1970), pp. 120–123.Google Scholar
  51. [51]
    F. Gianocotti, Integrin-signaling: specificity and control of cell survival and cell cycle progression, Curr. Opin. Cell Biol, 9 (1997), pp. 691–700.Google Scholar
  52. [52]
    J.A. Glazier, Dynamics of cellular patterns, Ph.D. Thesis, The University of Chicago, USA, 1989.Google Scholar
  53. [53]
    J.A. Glazier and F. Graner, Simulation of the differential adhesion driven rearrangement of biological cells, Phys. Rev. E, 47 (1993), pp. 2128–2154.Google Scholar
  54. [54]
    D. Godt and U. Tepass, Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature, 395 (1998), pp. 387–391.Google Scholar
  55. [55]
    I. Golding, Y. Kozlovsky, I. Cohen, and E. Ben-Jacob, Studies of bacterial branching growth using reaction-diffusion models for colonial development, Physica A, 260 (1998), pp. 510–554.Google Scholar
  56. [56]
    A. Gonzalez-Reyes and D. St. Johnston, Patterning of the follicle cell epithe lium along the anterior-posterior axis during Drosophila oogenesis. Development, 125 (1998), pp. 2837–2846.Google Scholar
  57. [57]
    F. Graner and J.A. Glazier, Simulation of biological cell sorting using a two-dimensional Extended Potts Model, Phys. Rev. Lett., 69 (1992), pp. 2013–2016.Google Scholar
  58. [58]
    J. Hardy, O. de Pazzis, and Y. Pomeau, Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions, Phys. Rev. A, 13 (1976), pp. 1949–1961.Google Scholar
  59. [59]
    P. Hogeweg, Evolving mechanisms of morphogenesis: On the interplay between differential adhesion and cell differentiation, J. Theor. Biol., 203 (2000), pp. 317–333.Google Scholar
  60. [60]
    P. Hogeweg, Shapes in the shadow: Evolutionary dynamics of morphogenesis, Artificial Life, 6 (2000), pp. 611–648.Google Scholar
  61. [61]
    E. Holm, J.A. Glazier, D. Srolovitz, and G. Crest, Effects of lattice anisotropy and temperature on domain growth in the 2-dimensional Potts model, Phys. Rev. A, 43 (1991), pp. 2262–2268.Google Scholar
  62. [62]
    A. Howe, A. Aplin, S. Alahari, and R. Juliano, Integrin signaling and cell growth control, Curr. Opin. Cell Biol., 10 (1998), pp. 220–231.Google Scholar
  63. [63]
    O. Igoshin, A. Mogilner, D. Kaiser, and G. Oster, Pattern formation and traveling waves in myxobacteria: Theory and modeling, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 14913–14918.Google Scholar
  64. [64]
    L. Jelsbak and L. Sogaard-Andersen, The cell surface-associated intercellular C-signal induces behavioral changes in individual Myxococcus xanthus cells during fruiting body morphogenesis, Devel. Bio, 96 (1998), pp. 5031–5036.Google Scholar
  65. [65]
    L. Jelsbak and L. Sogaard-Andersen, Pattern formation: Fruiting body morphogenesis in Myxococcus xanthus. Current Opinion in Microbiology, 3 (2000), pp. 637–642.Google Scholar
  66. [66]
    Y. Jiang and J.A. Glazier, Extended large-Q Potts model simulation of foam drainage, Philos. Mag. Lett., 74 (1996), pp. 119–128.Google Scholar
  67. [67]
    Y. Jiang, Cellular pattern formation, Ph.D. Thesis, University of Notre Dame, USA, 1998.Google Scholar
  68. [68]
    Y. Jiang, H. Levine, and J.A. Glazier, Possible cooperation of differential adhesion and Chemotaxis in mound formation of Dictyostelium, Biophys. J., 75 (1998), pp. 2615–2625.Google Scholar
  69. [69]
    B. Julien, D. Kaiser, and A. Garza, Spatial control of cell differentiation in Myxococcus xanthus, Proc. Natl. Acad. Sci. USA, 97 (2000), pp. 9098–9103.Google Scholar
  70. [70]
    L.P. Kadanoff, G.R. McNamara, and G. Zanetti, From automata to fluid-flow-Comparisons óf simulation and theory, Phys. Rev. A, 40 (1989), pp. 4527–4541.Google Scholar
  71. [71]
    D. Kaiser, How and why myxobacteria talk to each other, Current Opinion in Microbiology, 1 (1998), pp. 663–668.MathSciNetGoogle Scholar
  72. [72]
    D. Kaiser, Intercellular signaling for multicellular morphogenesis, Society for General Microbiology Symposium 57, Cambridge University Press, Society for General Microbiology Ltd., UK, 1999.Google Scholar
  73. [73]
    A. Kansal, S. Torquato, E. Chiocca, and T. Deisboeck, Emergence of a sub-population in a computational model of tumor growth, J. Theor. Biol., 207 (2000), pp. 431–441.Google Scholar
  74. [74]
    N. Kataoka, K. Saito, and Y. Sawada, NMR microimaging of the cell sorting process, Phys. Rev. Lett., 82 (1999), pp. 1075–1078.Google Scholar
  75. [75]
    E.F. Keller and L.A. Segal, Initiation of slime mold aggregation viewed as an instability, J. Theor. Bio., 26 (1970), pp. 399–415.Google Scholar
  76. [76]
    P. Kiberstis and J. Marx, Frontiers in cancer research, Science, 278 (1977), pp. 1035–1035.Google Scholar
  77. [77]
    S. Kim and D. Kaiser, Cell alignment in differentiation of Myxococcus xanthus, Science, 249 (1990), pp. 926–928.Google Scholar
  78. [78]
    S. Kim and D. Kaiser, C-factor has distinct aggregation and sporulation thresholds during Myxococcus development, J. Bacteriol., 173 (1991), pp. 1722–1728.Google Scholar
  79. [79]
    M. Kiskowski, M. Alber, G. Thomas, J. Glazier, N. Bronstein, and S. Newman, Interaction between reaction-diffusion process and cell-matrix adhesion in a cellular automata model for chondrogenic pattern formation: a prototype study for developmental modeling, 2002, in preparation.Google Scholar
  80. [80]
    J. Kuner and D. Kaiser, Fruiting body morphogenesis in submerged cultures of Myxococcus xanthus, J. Bacteriol., 151 (1982), pp. 458–46LGoogle Scholar
  81. [81]
    S. Kyriacou, C. Davatzikos, S. Zinreich, and R. Bryan, Nonlinear elastic registration of brain images with tumor pathology using a biomechanical model, IEEE Transactions On Medical Imaging, 18 (1999), pp. 580–592.Google Scholar
  82. [82]
    J. Landry, J. Freyer, and R. Sutherland, A model for the growth of multicellular spheroids, Cell Tiss. Kinet., 15 (1982), pp. 585–594.Google Scholar
  83. [83]
    C. Leonard, H. Fuld, D. Frenz, S. Downie, Massagué, and S. Newman, Role of transforming growth factor-β in chondrogenic pattern formation in the embryonic limb: Stimulation of mesenchymal condensation and fibronectin gene expression by exogenous TGF-β-like activity, Devel. Bio., 145 (1991), pp. 99–109.Google Scholar
  84. [84]
    H. Levine, I. Aranson, L. Tsimring, and T. Truong, Positive genetic feedback governs CAMP spiral wave formation in Dictyostelium, Proc. Natl. Acad. Sci. USA, 93 (1996), pp. 6382–6386.Google Scholar
  85. [85]
    A. Nicol, W.J. Rappel, H. Levine, and W.F. Loomis, Cell-sorting in aggregates of Dictyostelium discoideum, J. Cell. Sci., 112 (1999), pp. 3923–3929.Google Scholar
  86. [86]
    H. Levine, W-J. Rappel, and I. Cohen, Self-organization in systems of self-propelled particles, Phys. Rev. E, 63 (2001), 017101.Google Scholar
  87. [87]
    S. Li, B. Lee and L. Shimkets, csgA expression entrains Myxococcus Xanthus development. Genes Development, 6 (1992), pp. 401–410.Google Scholar
  88. [88]
    W. Loomis, Lateral inhibition and pattern formation in Dictyostelium, Curr. Top. Dev. Biol., 28 (1995), pp. 1–46.Google Scholar
  89. [89]
    F. Lutscher, Modeling alignment and movement of animals and cells, J. Math. Biol., DOI: 10.1007/s002850200146, 2002.Google Scholar
  90. [90]
    F. Lutscher and A. Stevens, Emerging patterns in a hyperbolic model for locally interacting cell systems. Journal of Nonlinear Sciences, 2002 preprint.Google Scholar
  91. [91]
    P. Maini, Mathematical models in morphogenesis, pp. 151–189. In V. Capasso and O. Dieckmann (Eds.), Mathematics Inspired Biology, Springer, Berlin, 1999.Google Scholar
  92. [92]
    A. Maree, A. Panfilov, and P. Hogeweg, Migration and thermotaxis of Dictyostelium discoideum slugs, a model study, J. Theor. Biol., 199 (1999), pp. 297–309.Google Scholar
  93. [93]
    A. Maree, From pattern formation to morphogenesis: Multicellular coordination in Dictyostelium discoideum, Ph.D. Thesis., Utrecht University, the Netherlands, 2000.Google Scholar
  94. [94]
    A. Maree and P. Hogeweg, How amoeboids self-organize into a fruiting body: Multicellular coordination in Dictyostelium discoideum, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 3879–3883.Google Scholar
  95. [95]
    M. Marusic, Z. Bajzer, J. Freyer, and S. Vuk-Pavlovic, Modeling autostimulation of growth in multicellular tumor spheroids. Int. J. Biomed. Comput., 29 (1991), pp. 149–158.Google Scholar
  96. [96]
    M. Marusic, Z. Bajzer, J. Freyer, and S. Vuk-Pavlovic, Analysis of growth of multicellular tumor spheroids by mathematical models. Cell Prolif., 27 (1994), pp. 73–94.Google Scholar
  97. [97]
    J. Marrs and W. Nelson, Cadherin cell adhesion molecules in differentiation and embryogenesis. Int. Rev. Cytol., 165 (1996), pp. 159–205.Google Scholar
  98. [98]
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, Combinatorial minimization, J. Chem. Phys., 21 (1953), pp. 1087–1092.Google Scholar
  99. [99]
    A. Mogilner and L. Edelstein-Keshet, Spatio-angular order in populations of self-aligning objects: formation of oriented patches, Physica D, 89 (1996), pp. 346–367.MathSciNetMATHGoogle Scholar
  100. [100]
    A. Mogilner, L. Edelstein-Keshet, and G. Ermentrout, Selecting a common direction. II. Peak-like solutions representing total alignment of cell clusters, J. Math. Biol., 34 (1996), pp. 811–842.MathSciNetMATHGoogle Scholar
  101. [101]
    A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38 (1999), pp. 534–570.MathSciNetMATHGoogle Scholar
  102. [102]
    J. Mombach, J.A. Glazier, R. Raphael, and M. Zajac, Quantitative comparison between differential adhesion models and cell sorting in the presence and absence of ßuctuations, Phys. Rev. Lett., 75 (1995), pp. 2244–2247.Google Scholar
  103. [103]
    J. Mombach and J.A. Glazier, Single cell motion in aggregates of embryonic cells, Phys. Rev. Lett., 76 (1996), pp. 3032–3035.Google Scholar
  104. [104]
    F. Monier-Gavelle and J. Duband, Cross talk between adhesion molecules: Control of N-cadherin activity by intracellular signals elicited by beta 1 and beta 3 integrins in migrating neural crest cells, J. Cell. Biol., 137 (1997), pp. 1663–1681.Google Scholar
  105. [105]
    J. Murray, Mathematical biology, Biomathematics 19, Springer, New York, 1989.MATHGoogle Scholar
  106. [106]
    V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, J. Theor. Bio., 42 (1973), pp. 63–105.Google Scholar
  107. [107]
    S. Newman and H. Frisch, Dynamics of skeletal pattern formation in developing chick limb. Science, 205 (1979), pp. 662–668.Google Scholar
  108. [108]
    S. Newman, Sticky fingers: Hox genes and cell adhesion in vertebrate development, Bioessays, 18 (1996), pp. 171–174.Google Scholar
  109. [109]
    K. O’Connor and D. Zusman, Patterns of cellular interactions during fruiting-body formation in Myxococcus xanthus, J. Bacteriol., 171 (1989), pp. 6013–6024.Google Scholar
  110. [110]
    G.M. Odell and J.T. Bonner, How the Dictyostelium discoideum grex crawls, Philos. Trans. Roy. Soc. London, B., 312 (1985), pp. 487–525.Google Scholar
  111. [111]
    C. Ofria, C. Adami, T.C. Collier, and G.K. Hsu, E volution of differentiated expression patterns in digital organisms; Lect. Notes Artif. Intell., 1674 (1999), pp. 129–138.Google Scholar
  112. [112]
    H.G. Othmer, S. Dunbar, and W. Alt, Models of dispersal in biological systems, J. Math. Biol., 26 (1988), pp. 263–298.MathSciNetMATHGoogle Scholar
  113. [113]
    H.G. Othmer and T. Hillen, The diffusion limit of transport equations II: Chemotaxis equations, SIAM J. Appl. Math., 62 (2002), pp. 1222–1250.MathSciNetMATHGoogle Scholar
  114. [114]
    J.K. Parrish and W. Hamner, (Eds.), Animal groups in three dimensions, Cambridge University Press, Cambridge, 1997.Google Scholar
  115. [115]
    J.K. Parrish and L. Edelstein-Keshet, From individuals to aggregations: Complexity, epiphenomena, and evolutionary trade-offs of animal aggregation, Science, 284 (1999), pp. 99–101.Google Scholar
  116. [116]
    A. Pelizzola, Low-temperature phase of the three-state antiferromagnetic Potts model on the simple-cubic lattice, Phys. Rev. E, 54 (1996), pp. R5885-R5888.Google Scholar
  117. [117]
    J. Pjesivac and Y. Jiang, A cellular model for avascular tumor growth, unpublished (2002).Google Scholar
  118. [118]
    T. Pollard and J. Cooper, Actin and act in-binding proteins. A critical evaluation of mechanisms and function, Ann. Rev. Biochem., 55 (1986), pp. 987–1035.Google Scholar
  119. [119]
    R. Potts, Some generalized order-disorder transformations, Proc. Cambridge Phil. Soc., 48 (1952), pp. 106–109.MathSciNetMATHGoogle Scholar
  120. [120]
    I. Prigogine and R. Herman, Kinetic theory of vehicular traffic, American Elsevier, New York, 1971.MATHGoogle Scholar
  121. [121]
    S. Rahman, E. Rush, and R. Swendsen, Intermediate-temperature ordering in a three-state antiferromagnetic Potts model, Phys. Rev. B. 58 (1998). pp. 9125–9130.Google Scholar
  122. [122]
    W.J. Rappel, A. Nicol, A. Sarkissian, H. Levine, and W.F. Loomis Self-organized vortex state in two-dimensional Dictyostelium dynamics, Phys. Rev. Lett., 83 (1999), pp. 1247–1250.Google Scholar
  123. [123]
    H. Reichenbach, Myxobacteria: A most peculiar group of social prokaryotes, in Myxobacteria development and cell interactions, E. Rosenburg (Ed.) Springer-Verlag, NY, 1984, pp. 1–50.Google Scholar
  124. [124]
    C.W. Reynolds, Flocks, herds, and schools: A distributed behavioral model, ACM Computer Graphics, SIGGRAPH ’87, 21 (1987), pp. 25–34.Google Scholar
  125. [125]
    D. Richardson Random growth in a tessellation, Proc. Camb. Phil. Soc., 74 (1973), pp. 563–573.Google Scholar
  126. [126]
    J. Rieu, A. Upadhyaya, J.A. Glazier, N. Ouchi, and Y. Sawada, Diffusion and deformations of single hydra cells in cellular aggregates, Biophys. J, 79 (2000), pp. 1903–1914.Google Scholar
  127. [127]
    J. Rubin and A. Robertson, The tip of the Dictyostelium pseudoplasmodium as an organizer, J. Embryol. Exp. Morphol., 33 (1975), pp. 227–241.Google Scholar
  128. [128]
    B. Sager and D. Kaiser, Two cell-density domains within the Myxococcus xanthus fruiting body, Proc. Natl. Acad. Sci., 90 (1993), pp. 3690–3694.Google Scholar
  129. [129]
    B. Sager and D. Kaiser, Intercellular C-signaling and the traveling waves of Myxococcus xanthus. Genes Development, 8 (1994), pp. 2793–2804.Google Scholar
  130. [130]
    P. Sahni, G. Grest, M. Anderson, and D. Srolovitz, Kinetics of the Q-state Potts model in 2 dimensions, Phys. Rev. Lett., 50 (1983), pp. 263–266.Google Scholar
  131. D. Srolovitz, M. Anderson, G. Grest, and P. Sahni, Grain-growth in 2 dimensions, Scripta Met., 17 (1983), pp. 241–246.Google Scholar
  132. D. Srolovitz, M. Anderson, G. Grest, and P. Sahni, Computer-simulation of grain-growth. 2. Grain-size distribution, topology, and local dynamics. Acta Met., 32 (1984), pp. 793–802.Google Scholar
  133. D. Srolovitz, M. Anderson, G. Grest, and P. Sahni, Computer-simulation of grain-growth. 3. Influence of a particle dispersion. Acta Met., 32 (1984), pp. 1429–1438.Google Scholar
  134. G. Grest, D. Srolovitz, and M. Anderson, Kinetics of domain growth: universality of kinetic exponents, Phys. Rev. Letts,. 52 (1984), pp. 1321–1329.Google Scholar
  135. D. Srolovitz, G. Grest, and M. Anderson, Computer-simulation of grain growth. 5. Abnormal grain-growth, Acta Met., 33 (1985), pp. 2233–2247.Google Scholar
  136. [131]
    N. Savill and p. Hogeweg, Modelling morphogenesis: From single cells to crawling slugs, J. Theor. Bio., 184 (1997), pp. 229–235.Google Scholar
  137. [132]
    M. scalerandi, B. Sansone, and C. Condat, Diffusion with evolving sources and competing sinks: Development of angiogenesis, Phys. Rev. E, 65 (2002), 011902.Google Scholar
  138. [133]
    J.A. Shapiro, Bacteria as multicellular organisms. Scientific American, 258 (1988), pp. 82–89.Google Scholar
  139. [134]
    J. A. Shapiro, The significances of bacterial colony patterns, Bioessays, 17 (1995), pp. 597–607.Google Scholar
  140. [135]
    J.A. Shapiro, Thinking about bacterial populations as multicellular organisms, Annual Review of Microbiology, 52 (1998), pp. 81–104.Google Scholar
  141. [136]
    N. Shimoyama, K. Sugawara, T. Mizuguchi, Y. Hayakawa, and M. Sano, Collective motion in a system of motile elements, Phys. Rev. Lett., 76 (1996), pp. 3870–3873.Google Scholar
  142. [137]
    E. Siggia, Late stages of spinodal decomposition in binary mixtures, Phys. Rev. A, 20 (1979), pp. 595–605.Google Scholar
  143. [138]
    S. Simpson, A. McCaffery, and B. Hagele, A behavioural analysis of phase change in the desert locust. Bio. Rev. of the Cambridge Philosophical Society, 74 (1999), pp. 461–480.Google Scholar
  144. [139]
    D. Soll, Computer-assisted three-dimensional reconstruction and motion analysis of living, crawling cells, Computerized Medical Imaging and Graphics, 23 (1999), pp. 3–14.Google Scholar
  145. [140]
    D. Soll, E. Voss, O. Johnson, and D. Wessels, Three-dimensional reconstruction and motion analysis of living, crawling cells, Scanning, 22 (2000), pp. 249–257.Google Scholar
  146. [141]
    J. Stavans, The evolution of cellular structures. Rep. Prog. Phys., 56 (1993), pp. 733–789.Google Scholar
  147. [142]
    M. Steinberg, Mechanism of tissue reconstruction by dissociated cells, II. Time-course of events. Science, 137 (1962), pp. 762–763.Google Scholar
  148. [143]
    M. Steinberg, Cell membranes in development. Academic Press, NY, 1964.Google Scholar
  149. [144]
    A. Stevens, A stochastic cellular automaton modeling gliding and aggregation of Myxobacteria, SIAM J. Appl. Math., 61 (2000), pp. 172–182.MathSciNetMATHGoogle Scholar
  150. [145]
    E. Stott, N. Britton, J. A. Glazier, and M. Zajac, Stochastic simulation of benign avascular tumour growth using the Potts model, Mathematical and Computer Modelling, 30 (1999), pp. 183–198.Google Scholar
  151. [146]
    U. Technau and T. Holstein, Cell sorting during the regeneration of hydra from reaggregated cells, Devel. Bio, 151 (1992), pp. 117–127.Google Scholar
  152. [147]
    D. Thompson, On growth and form, Cambridge University Press, Cambridge, 1942.MATHGoogle Scholar
  153. [148]
    A. Turing, The chemical basis of morphogenesis, Phil. Trans. R. Soc. London, 237 (1952), pp. 37–72.Google Scholar
  154. [149]
    A. Upadhyaya, Thermodynamics and fluid properties of cells, tissues and membranes, Ph.D. Thesis., The University of Notre Dame, USA, 2001.Google Scholar
  155. [150]
    A. Upadhyaya, J. Rieu, J. A. Glazier and Y. Sawada, Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates, Physica A, 293 (2001), pp. 49–558.Google Scholar
  156. [151]
    P. Van Haaster, Sensory adaptation of Dictyostelium discoideum cells to chemotactic signals, J. Cell Biol., 96 (1983), pp. 1559–1565.Google Scholar
  157. [152]
    B. Vasiev, F. Siegert and C.J. Weijer, A hydrodynamic model approach for Dictyostelium mound formation, J. Theor. Biol., 184 (1997), pp. 441–450.Google Scholar
  158. [153]
    T. Vicsek, A. Czirok, E. Ben-Jacob, I Cohen, O. Shochet, and A. Tenenbaum, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), pp. 1226–1229.Google Scholar
  159. [154]
    J. von Neumann, Theory of self-reproducing automata, (edited and completed by A. W. Burks), University of Illinois Press, Urbana, 1966.Google Scholar
  160. [155]
    J. Wartiovaara, M. Karkinen-Jääskelänen, E. Lehtonen, S. Nordling, and L. Saxen, Morphogenetic cell interactions in kidney development, in N. Müller-Bér) (Ed.), Progress in differentiation research. North-Holland Publishing Company, Amsterdam, 1976, 245–252.Google Scholar
  161. [156]
    D. Weaire and N. Rivier, Soap, cells and statistics: random patterns in 2 dimensions, Contemp. Phys. 25 (1984) pp. 59–99.Google Scholar
  162. [157]
    H. Williams, S. Desjardins, and F. Billings, Two-dimensional growth models, Phys. Lett. A, 250 (1998), pp. 105–110.Google Scholar
  163. [158]
    J. Williams, Regulation of cellular differentiation during Dictyostelium morphogenesis, Curr. Opin. Genet. Dev., 1 (1991), pp. 338–362.Google Scholar
  164. [159]
    J. Wejchert, D. Weaire, and J. Kermode, Monte-Carlo simulation of the evolution of a two-dimensional soap froth, Phil. Mag. B, 53 (1986), pp. 15–24.Google Scholar
  165. [160]
    R. Welch and D. Kaiser, Cell behavior in traveling wave patterns of myxobacteria, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 14907–14912.Google Scholar
  166. [161]
    T. Witten and L. Sander, Diffusion-limited aggregation, Phys. Rev. B, 27 (1983), pp. 5686–5697.MathSciNetGoogle Scholar
  167. [162]
    D. Wolf-Gladrow, Lattice-gas cellular automata and lattice Boltzmann models — An introduction. Springer-Ver lag, Berlin, Lecture Notes in Mathematics 1725 (2000).MATHGoogle Scholar
  168. [163]
    S. Wolfram, Statistical mechanics of cellular automata. Rev. Mod. Phys., 55 (1983), pp. 601–604.MathSciNetMATHGoogle Scholar
  169. [164]
    S. Wolfram, Cellular automata and complexity, Addison-Wesley, Reading, 1994.MATHGoogle Scholar
  170. [165]
    S. Wolfram, A new kind of science, Wolfram Media, Champaign, 2002.MATHGoogle Scholar
  171. [166]
    C. wolgemuth and E. Hoiczyk, How Myxohactevia glide. Current Biology, 12 (2002), pp. 369–377.Google Scholar
  172. [167]
    F. Wu, The Potts-model, Rev. Mod. Phys., 54 (1982), pp. 235–268.Google Scholar
  173. [168]
    M. Zajac, G. Jones, and J.A. Glazier, Model of convergent extension in animal morphogenesis, Phys. Rev. Lett., 85 (2000), pp. 2022–2025.Google Scholar
  174. [169]
    M. Zajac, Modeling convergent extension by way of anisotropic differential adhesion. Ph.D. thesis. The University of Notre Dame, USA, 2002.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2003

Authors and Affiliations

  • Mark S. Alber
    • 1
  • Maria A. Kiskowski
    • 2
  • James A. Glazier
    • 3
  • Yi Jiang
    • 4
  1. 1.Department of Mathematics and Interdisciplinary Center for the Study of BiocomplexityUniversity of Notre DameNotre DameUSA
  2. 2.Department of MathematicsUniversity of Notre DameNotre DameUSA
  3. 3.Department of Physics and Biocomplexity InstituteIndiana UniversityBloomingtonUSA
  4. 4.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations