Skip to main content

Rotary Motor

  • Chapter
  • 930 Accesses

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)

Abstract

The structure of the rotary motor was described in Chapter 9 (Fig. 9.3) and its assembly was discussed in Chapter 10. Here, I will say more about function. Given that the diameter of the motor is less than one-tenth the wavelength of light and that it contains more than 20 of different kinds of parts (Appendix, Table A.3), it is a nanotechnologist’s dream (or nightmare).

Keywords

  • Duty Ratio
  • Latex Bead
  • Load Line
  • Rotary Motor
  • Torque Generator

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-21638-6_12
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-21638-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asai, Y., T. Yakushi, I. Kawagishi, and M. Homma. 2003. Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. J. Mol. Biol. 327:453–463.

    CrossRef  Google Scholar 

  • Berg, H. C. 1976. Does the flagellar rotary motor step? In: Cell Motility, Cold Spring Harbor Conferences on Cell Proliferation. R. Goldman, T. Pollard, J. Rosenbaum, editors. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY., pp. 47–56.

    Google Scholar 

  • Berg, H. C. 2000. Constraints on models for the flagellar rotary motor. Philos. Trans. R. Soc. Lond. B 355:491–501.

    CrossRef  Google Scholar 

  • Berg, H. C. 2003. The rotary motor of bacterial flagella. Anna. Rev. Biochem, 72:19–54.

    CrossRef  Google Scholar 

  • Berg, H. C., and L. Turner. 1979. Movement of microorganisms in viscous environments. Nature 278:349–351.

    CrossRef  ADS  Google Scholar 

  • Berg, H. C., and L. Turner. 1993. Torque generated by the flagellar motor of Escherichia coli. Biophys. J. 65:2201–2216.

    CrossRef  ADS  Google Scholar 

  • Berry, R. B. 2000. Theories of rotary motors. Philos. Trans. R. Soc. Lond. B 355:503–509.

    CrossRef  Google Scholar 

  • Berry, R. B. 2003. The bacterial flagellar motor. In: Molecular Motors. M. Schliwa, editor. Wiley-VCH, Weinheim, pp. 111–140.

    Google Scholar 

  • Berry, R. B., and J. P. Armitage. 1999. The bacterial flagella motor. Adv. Microbiol. Physiol. 41:291–337.

    CrossRef  Google Scholar 

  • Berry, R. M., and H. C. Berg. 1997. Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers. Proc. Natl. Acad. Sci. USA 94:14433–14437.

    CrossRef  ADS  Google Scholar 

  • Berry, R. M., and H. C. Berg. 1999. Torque generated by the flagellar motor of Escherichia coli while driven backward. Biophys. J. 76: 580–587.

    CrossRef  ADS  Google Scholar 

  • Blair, D. F. 2003. Flagellar movement driven by proton translocation. FEBS Lett. 545:86–95.

    CrossRef  Google Scholar 

  • Blair, D. F., and H. C. Berg. 1988. Restoration of torque in defective flagellar motors. Science 242:1678–1681.

    CrossRef  ADS  Google Scholar 

  • Block, S. M., D. F. Blair, and H. C. Berg. 1989. Compliance of bacterial flagella measured with optical tweezers. Nature 338:514–517.

    CrossRef  ADS  Google Scholar 

  • Braun, T. F., and Blair, D. F. 2001. Targeted disulfide cross-linking of the MotB protein of Escherichia coli: evidence for two H+ channels in the stator complex. Biochemistry 40:13051–13059.

    CrossRef  Google Scholar 

  • Braun, T. F., S. Poulson, J. B. Gully, et al. 1999. Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli. J. Bacteriol. 181:3542–3551. Bustamante, C., D. Keller, and G. Oster. 2001. The physics of molecular motors. Acc. Chem. Res. 34:412–420.

    Google Scholar 

  • Caplan, S. R., and M. Kara-Ivanov. 1993. The bacterial flagellar motor. Int. Rev. Cytol. 147:97–164.

    CrossRef  Google Scholar 

  • Chen, X., and H. C. Berg. 2000a. Torque-speed relationship of the flagellar rotary motor of Escherichia coli. Biophys. J. 78:1036–1041.

    CrossRef  ADS  Google Scholar 

  • Chen, X., and H. C. Berg. 2000b. Solvent-isotope and pH effects on flagellar rotation in Escherichia coli. Biophys. J. 78:2280–2284.

    CrossRef  ADS  Google Scholar 

  • Fung, D. C., and H. C. Berg. 1995. Powering the flagellar motor of Escherichia coli with an external voltage source. Nature 375:809–812.

    CrossRef  ADS  Google Scholar 

  • Gabel, C.V., and H. C. Berg. 2003. The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force. Proc. Natl. Acad. Sci. USA 100:8748–8751.

    CrossRef  ADS  Google Scholar 

  • Garcia de la Torre, J., and V. A. Bloomfield. 1981. Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications. Q. Rev. Biophys. 14:81–139.

    CrossRef  Google Scholar 

  • Harold, F. M., and P. C. Maloney. 1996. Energy transduction by ion currents. In: Escherichia coli and Salmonella: Cellular and Molecular Biology. F. C. Neidhardt, R. Curtiss, J. L. Ingraham, et al., editors. ASM Press, Washington DC, pp. 283–306.

    Google Scholar 

  • Howard, J. 2001. Mechanics of Motor Proteins and the Cytoskeleton. Sinaur Associates, Sunderland, MA.

    Google Scholar 

  • Imae, Y. 1991. Use of Na+ as an alternative to H+ in energy transduction. In: New Era of Bioenergetics. Y. Mukohata, editor. Academic Press, Tokyo, pp. 197–221.

    Google Scholar 

  • Imae, Y., and T. Atsumi. 1989. Na+-driven bacterial flagellar motors. J. Bioenerg. Biomembr. 21:705–716.

    CrossRef  Google Scholar 

  • Jeffery, G. B. 1915. On the steady rotation of a solid of revolution in a viscous fluid. Proc. Lond. Math. Soc. 14:327–338.

    Google Scholar 

  • Khan, S. 1997. Rotary chemiosmotic machines. Biochim. Biophys. Acta 1322:86–105.

    CrossRef  Google Scholar 

  • Khan, S., and H. C. Berg. 1983. Isotope and thermal effects in chemiosmotic coupling to the flagellar motor of Streptococcus. Cell 32:913–919.

    CrossRef  Google Scholar 

  • Khan, S., M. Meister, and H. C. Berg. 1985. Constraints on flagellar rotation. J. Mol. Biol. 184:645–656.

    CrossRef  Google Scholar 

  • Kojima, S., and D. F. Blair 2001. Conformational change in the stator of the bacterial flagellar motor. Biochemistry 40:13041–13050.

    CrossRef  Google Scholar 

  • Larsen, S. H., J. Adler, J. J. Gargus, and R. W. Hogg. 1974. Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria. Proc. Natl. Acad. Sci. USA 71:1239–1243.

    CrossRef  ADS  Google Scholar 

  • Läuger, P., and B. Kleutsch. 1990. Microscopic models of the bacterial flagellar motor. Comments Theor. Biol. 2:99–123.

    Google Scholar 

  • Lloyd, S. A., and D. F. Blair. 1997. Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J. Mol. Biol. 266:733–744.

    CrossRef  Google Scholar 

  • Lowe, G., M. Meister, and H. C. Berg. 1987. Rapid rotation of flagellar bundles in swimming bacteria. Nature 325:637–640.

    CrossRef  ADS  Google Scholar 

  • Macnab, R. M. 1996. Flagella and motility. In: Escherichia coli and Salmonella: Cellular and Molecular Biology. F. C. Neidhardt, R. Curtiss, J. L. Ingraham, et al., editors. ASM Press, Washington, DC, pp. 123–145.

    Google Scholar 

  • McCarter, L. L. 2001. Polar flagellar motility of the Vibrionaceae. Microbiol. Mol. Biol. Rev. 65:445–462.

    Google Scholar 

  • Meister, M., G. Lowe, and H. C. Berg. 1987. The proton flux through the bacterial flagellar motor. Cell 49:643–650.

    CrossRef  Google Scholar 

  • Ravid, S., and M. Eisenbach. 1984. Minimal requirements for rotation of bacterial flagella. J. Bacteriol. 158:1208–1210.

    Google Scholar 

  • Samuel, A. D.T., and H. C. Berg. 1995. Fluctuation analysis of rotational speeds of the bacterial flagellar motor. Proc. Natl. Acad. Sci. USA 92: 3502–3506.

    CrossRef  ADS  Google Scholar 

  • Samuel, A. D. T., and H. C. Berg. 1996. Torque-generating units of the bacterial flagellar motor step independently. Biophys. J. 71:918–923.

    CrossRef  ADS  Google Scholar 

  • Schuster, S. C., and S. Khan. 1994. The bacterial flagellar motor. Annu. Rev. Biophys. Biomol. Struct. 23:509–539.

    CrossRef  Google Scholar 

  • van der Drift, C., J. Duiverman, H. Bexkens, and A. Krijnen. 1975. Chemotaxis of a motile Streptococcus toward sugars and amino acids. J. Bacteriol. 124:1142–1147.

    Google Scholar 

  • Washizu, M., Y. Kurahashi, H. Iochi, et al. 1993. Dielectrophoretic measurement of bacterial motor characteristics. IEEE Trans. Ind. Appl. 29:286–294.

    CrossRef  Google Scholar 

  • Yorimitsu, T., and M. Homma. 2001. Na+-driven flagellar motor of Vibrio. Biochim. Biophys. Acta 1505:82–93.

    CrossRef  Google Scholar 

  • Zhou, J., S. A. Lloyd, and D. F Blair. 1998a. Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc. Natl. Acad. Sci. USA 95:6436–6441.

    CrossRef  ADS  Google Scholar 

  • Zhou, J., L. L. Sharp, H. L. Tang, et al. 1998b. Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB. J. Bacteriol. 180:2729–2735.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

(2004). Rotary Motor. In: Berg, H.C. (eds) E. coli in Motion. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21638-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21638-6_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00888-2

  • Online ISBN: 978-0-387-21638-6

  • eBook Packages: Springer Book Archive