Abstract
The structure of the rotary motor was described in Chapter 9 (Fig. 9.3) and its assembly was discussed in Chapter 10. Here, I will say more about function. Given that the diameter of the motor is less than one-tenth the wavelength of light and that it contains more than 20 of different kinds of parts (Appendix, Table A.3), it is a nanotechnologist’s dream (or nightmare).
Keywords
- Duty Ratio
- Latex Bead
- Load Line
- Rotary Motor
- Torque Generator
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Asai, Y., T. Yakushi, I. Kawagishi, and M. Homma. 2003. Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. J. Mol. Biol. 327:453–463.
Berg, H. C. 1976. Does the flagellar rotary motor step? In: Cell Motility, Cold Spring Harbor Conferences on Cell Proliferation. R. Goldman, T. Pollard, J. Rosenbaum, editors. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY., pp. 47–56.
Berg, H. C. 2000. Constraints on models for the flagellar rotary motor. Philos. Trans. R. Soc. Lond. B 355:491–501.
Berg, H. C. 2003. The rotary motor of bacterial flagella. Anna. Rev. Biochem, 72:19–54.
Berg, H. C., and L. Turner. 1979. Movement of microorganisms in viscous environments. Nature 278:349–351.
Berg, H. C., and L. Turner. 1993. Torque generated by the flagellar motor of Escherichia coli. Biophys. J. 65:2201–2216.
Berry, R. B. 2000. Theories of rotary motors. Philos. Trans. R. Soc. Lond. B 355:503–509.
Berry, R. B. 2003. The bacterial flagellar motor. In: Molecular Motors. M. Schliwa, editor. Wiley-VCH, Weinheim, pp. 111–140.
Berry, R. B., and J. P. Armitage. 1999. The bacterial flagella motor. Adv. Microbiol. Physiol. 41:291–337.
Berry, R. M., and H. C. Berg. 1997. Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers. Proc. Natl. Acad. Sci. USA 94:14433–14437.
Berry, R. M., and H. C. Berg. 1999. Torque generated by the flagellar motor of Escherichia coli while driven backward. Biophys. J. 76: 580–587.
Blair, D. F. 2003. Flagellar movement driven by proton translocation. FEBS Lett. 545:86–95.
Blair, D. F., and H. C. Berg. 1988. Restoration of torque in defective flagellar motors. Science 242:1678–1681.
Block, S. M., D. F. Blair, and H. C. Berg. 1989. Compliance of bacterial flagella measured with optical tweezers. Nature 338:514–517.
Braun, T. F., and Blair, D. F. 2001. Targeted disulfide cross-linking of the MotB protein of Escherichia coli: evidence for two H+ channels in the stator complex. Biochemistry 40:13051–13059.
Braun, T. F., S. Poulson, J. B. Gully, et al. 1999. Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli. J. Bacteriol. 181:3542–3551. Bustamante, C., D. Keller, and G. Oster. 2001. The physics of molecular motors. Acc. Chem. Res. 34:412–420.
Caplan, S. R., and M. Kara-Ivanov. 1993. The bacterial flagellar motor. Int. Rev. Cytol. 147:97–164.
Chen, X., and H. C. Berg. 2000a. Torque-speed relationship of the flagellar rotary motor of Escherichia coli. Biophys. J. 78:1036–1041.
Chen, X., and H. C. Berg. 2000b. Solvent-isotope and pH effects on flagellar rotation in Escherichia coli. Biophys. J. 78:2280–2284.
Fung, D. C., and H. C. Berg. 1995. Powering the flagellar motor of Escherichia coli with an external voltage source. Nature 375:809–812.
Gabel, C.V., and H. C. Berg. 2003. The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force. Proc. Natl. Acad. Sci. USA 100:8748–8751.
Garcia de la Torre, J., and V. A. Bloomfield. 1981. Hydrodynamic properties of complex, rigid, biological macromolecules: theory and applications. Q. Rev. Biophys. 14:81–139.
Harold, F. M., and P. C. Maloney. 1996. Energy transduction by ion currents. In: Escherichia coli and Salmonella: Cellular and Molecular Biology. F. C. Neidhardt, R. Curtiss, J. L. Ingraham, et al., editors. ASM Press, Washington DC, pp. 283–306.
Howard, J. 2001. Mechanics of Motor Proteins and the Cytoskeleton. Sinaur Associates, Sunderland, MA.
Imae, Y. 1991. Use of Na+ as an alternative to H+ in energy transduction. In: New Era of Bioenergetics. Y. Mukohata, editor. Academic Press, Tokyo, pp. 197–221.
Imae, Y., and T. Atsumi. 1989. Na+-driven bacterial flagellar motors. J. Bioenerg. Biomembr. 21:705–716.
Jeffery, G. B. 1915. On the steady rotation of a solid of revolution in a viscous fluid. Proc. Lond. Math. Soc. 14:327–338.
Khan, S. 1997. Rotary chemiosmotic machines. Biochim. Biophys. Acta 1322:86–105.
Khan, S., and H. C. Berg. 1983. Isotope and thermal effects in chemiosmotic coupling to the flagellar motor of Streptococcus. Cell 32:913–919.
Khan, S., M. Meister, and H. C. Berg. 1985. Constraints on flagellar rotation. J. Mol. Biol. 184:645–656.
Kojima, S., and D. F. Blair 2001. Conformational change in the stator of the bacterial flagellar motor. Biochemistry 40:13041–13050.
Larsen, S. H., J. Adler, J. J. Gargus, and R. W. Hogg. 1974. Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria. Proc. Natl. Acad. Sci. USA 71:1239–1243.
Läuger, P., and B. Kleutsch. 1990. Microscopic models of the bacterial flagellar motor. Comments Theor. Biol. 2:99–123.
Lloyd, S. A., and D. F. Blair. 1997. Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J. Mol. Biol. 266:733–744.
Lowe, G., M. Meister, and H. C. Berg. 1987. Rapid rotation of flagellar bundles in swimming bacteria. Nature 325:637–640.
Macnab, R. M. 1996. Flagella and motility. In: Escherichia coli and Salmonella: Cellular and Molecular Biology. F. C. Neidhardt, R. Curtiss, J. L. Ingraham, et al., editors. ASM Press, Washington, DC, pp. 123–145.
McCarter, L. L. 2001. Polar flagellar motility of the Vibrionaceae. Microbiol. Mol. Biol. Rev. 65:445–462.
Meister, M., G. Lowe, and H. C. Berg. 1987. The proton flux through the bacterial flagellar motor. Cell 49:643–650.
Ravid, S., and M. Eisenbach. 1984. Minimal requirements for rotation of bacterial flagella. J. Bacteriol. 158:1208–1210.
Samuel, A. D.T., and H. C. Berg. 1995. Fluctuation analysis of rotational speeds of the bacterial flagellar motor. Proc. Natl. Acad. Sci. USA 92: 3502–3506.
Samuel, A. D. T., and H. C. Berg. 1996. Torque-generating units of the bacterial flagellar motor step independently. Biophys. J. 71:918–923.
Schuster, S. C., and S. Khan. 1994. The bacterial flagellar motor. Annu. Rev. Biophys. Biomol. Struct. 23:509–539.
van der Drift, C., J. Duiverman, H. Bexkens, and A. Krijnen. 1975. Chemotaxis of a motile Streptococcus toward sugars and amino acids. J. Bacteriol. 124:1142–1147.
Washizu, M., Y. Kurahashi, H. Iochi, et al. 1993. Dielectrophoretic measurement of bacterial motor characteristics. IEEE Trans. Ind. Appl. 29:286–294.
Yorimitsu, T., and M. Homma. 2001. Na+-driven flagellar motor of Vibrio. Biochim. Biophys. Acta 1505:82–93.
Zhou, J., S. A. Lloyd, and D. F Blair. 1998a. Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc. Natl. Acad. Sci. USA 95:6436–6441.
Zhou, J., L. L. Sharp, H. L. Tang, et al. 1998b. Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp 32 of MotB. J. Bacteriol. 180:2729–2735.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag New York, Inc.
About this chapter
Cite this chapter
(2004). Rotary Motor. In: Berg, H.C. (eds) E. coli in Motion. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21638-6_12
Download citation
DOI: https://doi.org/10.1007/978-0-387-21638-6_12
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-00888-2
Online ISBN: 978-0-387-21638-6
eBook Packages: Springer Book Archive