Abstract
Across northern latitudes, the modern boreal forest extends over about 1.2 ×107 km2, an extraordinarily vast area that spans northern Europe, Asia, and North America (Van Cleve et al. 1983a; Nikolov and Helmisaari 1992). Periodic wildfires are common to this forest. Areas burned have large year-to-year variation, depending on climatic conditions; on average, on the order of 105 km2 of boreal forest burns each year (Stocks et al. 1996). Individual fires occasionally burn extensive areas, sometimes covering greater than 1,000,000 ha in a single burn (Cahoon et al. 1994; Murphy et al., this volume).
Keywords
- Soil Temperature
- Mineral Soil
- Soil Respiration
- Boreal Forest
- Microbial Respiration
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Auclair, A.N.D., and T.B. Carter. 1993. Forest wildfires as a recent source of CO2 at northern latitudes. Can. J. For. Res. 23:1530–1536.
Bonan, G.B., and K. Van Cleve. 1992. Soil temperature, nitrogen mineralization, and carbon source-sink relationships in boreal forests. Can. J. For. Res. 22:629–639.
Burke, R.A., R.G. Zepp, M.A. Tarr, W.L. Miller, and B.J. Stocks. 1997. Effect of fire on soil-atmosphere exchange of methane and carbon dioxide in Canadian boreal forest sites. J. Geophys. Res. 102:29,289–29,300.
Cahoon, D.R., B.J. Stocks, J.S. Levine, W.R. Cofer III, and J.M. Pierson. 1994. Satellite analysis of the severe 1987 forest fire in northern China and southeastern Siberia. J. Geophys. Res. 99:18,627–18,638.
Carslaw, H.S., and J.C. Jager. 1959. Conduction of Heat in Solids. Oxford University Press, London.
Dyrness, C.T., and R.A. Norum. 1983. The effects of experimental fires on black spruce forest floors in interior Alaska. Can. J. For. Res. 13:879–893.
Dyrness, C.T., L.A. Viereck, and K. Van Cleve. 1986. Fire in taiga communities of interior Alaska, pp. 74–86 in K. Van Cleve, F.S. Chapin III, P.W. Flanagan, L.A. Viereck, and C.T. Dyrness, ed. Forest Ecosystems in the Alaskan Taiga. Springer-Verlag, New York.
Geiger, R. 1965. The Climate Near the Ground. Harvard University Press, Cambridge, MA.
Goulden, M.L., S.C. Wofsy, J.W. Harden, S.E. Trumbore, P.M. Crill, S.T. Gower, T. Fries, B.C. Daube, S-M. Fan, D.J. Sutton, A. Bazzaz, and J.W. Munger. 1998. Sensitivity of boreal forest carbon balance to soil thaw. Science 279:214–217.
Harden, J.W., E.T. Sundquist, R.F. Stallard, and R.K. Mark. 1992. Dynamics of soil carbon during deglaciation of the Laurentide Ice Sheet. Science 258:1921–1924.
Harden, J.W., K.P. O’Neill, S.E. Trumbore, H. Veldhuis, and B.J. Stocks. 1997. Moss and soil contributions to the annual net carbon flux in a maturing boreal forest. J. Geophys. Res. 102:28,805–28,816.
Kasischke, E.S., N.L. Christensen, and B.J. Stocks. 1995. Fire, global warming, and the carbon balance of boreal forests. Ecol. Appl. 5:437–451.
Nakshabandi, G.A., and H. Kohnke. 1965. Thermal conductivity and diffusivity of soils as related to moisture tension and other physical properties. Agr. Meteorol. 2:271–279.
National Climate Data Center. 1998. Alaska climate summaries. Available on the World Wide Web at http://www.wrcc.sage.dri.edu/summary/climsmak.html.
Nikolov, N., and H. Helmisaari. 1992. Silvics of the circumpolar boreal forest tree species, pp. 13–84 in H.H. Shugart, R. Leemans, and G.B. Bonan, eds. A Systems Analysis of the Global Boreal Forest. University Press, Cambridge, UK.
O’Neill, K.P., E.S. Kasischke, D.D. Richter, and V. Krasovic. 1997. Effects of fire on temperature, moisture, and CO2 emissions from Tok, Alaska an initial assessment, pp. 295–303 in I.K. Iskandar, E.A. Wright, J.K. Radke, B.S. Sharratt, P.H. Groenevelt, and L.D. Hinzman, eds. International Symposium on Physics, Chemistry, and Ecology of Seasonally Frozen Soils. June 10–12, 1997, University of Alaska, Fairbanks, Alaska. U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH.
Page, A.L., R.H. Miller, and D.R. Keeney, eds. 1982. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properites, 2nd ed. Agronomy 9(2). Soil Science Society of America, Madison, WI.
Parkinson, K.J. 1981. An improved method for measuring soil respiration in the field. J. Appl. Ecol. 18:221–228.
Schlentner, R.E., and K. Van Cleve. 1985. Relationships between CO2 evolution from soil, substrate temperature, and substrate moisture in four mature forest types in interior Alaska. Can. J. For Res. 15:97–106.
Stocks, B.J., and J.B. Kauffman. 1997. Biomass consumption and behavior of wildland fires in boreal, temperate, and tropical ecosystems: parameters necessary to interpret historic fire regimes and future fire scenarios, pp.169–188 in J.S. Clark, H. Cachier, J.G. Goldammer, and B.J. Stocks, eds. Sediment Records of Biomass Burning and Global Change. NATO ASI Series, Subseries 1, Global Environmental Change, Vol. 51. Springer-Verlag, Berlin.
Stocks, B.J., B.S. Lee and D.L. Martell. 1996. Some potential carbon budget implications of fire management in the boreal forest, pp. 89–96 in M.J. Apps and D.T. Price, eds. Forest Management and the Global Carbon Cycle. NATO ASI Series, Subseries 1, Global Environmental Change, Vol. 40. Springer-Verlag, Berlin.
Trumbore, S.E., and J. Harden. 1997. Accumulation and turnover of carbon in soils of the BOREAS NSA: 1. Methods for determining soil C balance in surface and deep soil. J. Geophys. Res. 102:28,805–28,816.
Van Cleve, K., and L. Viereck. 1981. Forest succession in relation to nutrient cycling in the boreal forest of Alaska, pp. 184–211 in D.C. West, H.H. Shugart, and D.B. Botkin, eds. Forest Succession, Concepts and Application. Springer-Verlag New York.
Van Cleve, K., C.T. Dyrness, L.A. Viereck, J. Fox, F.S. Chapin, and W. Oechel. 1983a. Taiga ecosystems in interior Alaska. Bioscience 33:39–44.
Van Cleve, K., L. Oliver, R. Schlentner, L.A. Viereck, and C.T. Dyrness. 1983b. Productivity and nutrient cycling in taiga forest ecosystems. Can. J. For. Res. 13:747–766.
Viereck, L. 1983. The effects of fire in black spruce ecosystems of Alaska and northern Canada, pp. 201–220 in R.W. Wein and D.A. MacLean, eds. The Role of Fire in Northern Circumpolar Ecosystems. John Wiley & Sons, New York.
Viereck, L., and C.T. Dyrness. 1979. Ecological effects of the Wickersham Dome fire near Fairbanks, Alaska. General Technical Report PNW-90. USDA Forest Service, Portland, OR.
Zepp, R.G., W.L. Miller, M.A. Tarr, and R.A. Burke. 1997. Soil-atmosphere fluxes of carbon monoxide during early stages of postfire succession in upland Canadian boreal forests. J. Geophys. Res. 102:29,301–29,311.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer-Verlag New York, Inc.
About this chapter
Cite this chapter
Richter, D.D., O’Neill, K.P., Kasischke, E.S. (2000). Postfire Stimulation of Microbial Decomposition in Black Spruce (Picea mariana L.) Forest Soils: A Hypothesis. In: Kasischke, E.S., Stocks, B.J. (eds) Fire, Climate Change, and Carbon Cycling in the Boreal Forest. Ecological Studies, vol 138. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21629-4_11
Download citation
DOI: https://doi.org/10.1007/978-0-387-21629-4_11
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4684-9532-4
Online ISBN: 978-0-387-21629-4
eBook Packages: Springer Book Archive