Skip to main content

Abstract

The phylum currently consists of seven classes: the Methanobacteria, the Methanococci, the Halobacteria, the Thermoplasmata, the Thermococci, the Archaeoglobi, and the Methanopyri. With the sole exception of the Methanococci, which is subdivided into three orders, each class contains a single order. The Euryarchaeota are morphologically diverse and occur as rods, cocci, irregular cocci, lancet-shaped, spiral-shaped, disk-shaped, triangular, or square cells. Cells stain Gram-positive or Gram-negative based on the presence or absence of pseudomurein in cell walls. In some classes, cell walls consist entirely of protein or may be completely absent (Thermoplasmata). Five major physiological groups have been described previously: the methanogenic Archaea, the extremely halophilic Archaea, Archaea lacking a cell wall, sulfate reducing Archaea, and the extremely thermophilic S0 metabolizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Further Reading

  • Balch, W.E., G.E. Fox, L.J. Magrum, C.R. Woese and R.S. Wolfe. 1979. Methanogens: r¨¦¨¦valuation of a unique biological group. Microbiol. Rev. 43: 260–296.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari, A., T. Brusa, A. Rutili, E. Canzi and B. Biavati. 1994. Isolation and characterization of Methanobrevibacter oralis sp. nov. Curr. Microbiol. 29: 7–12.

    CAS  Google Scholar 

  • Leadbetter, J.R. and J.A. Breznak. 1996. Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl. Environ. Microbiol. 62: 3620–3631.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeikus, J.G. and D.L. Henning. 1975. Methanobacterium arbophilicum sp. nov. an obligate anaerobe isolated from wetwood of living trees. An-tonie Leeuwenhoek 41: 543–552.

    CAS  Google Scholar 

  • Biavati, B., M. Vasta and J.G. Ferry. 1988. Isolation and characterization of Methanosphaera cuniculi sp. nov. Appl. Environ. Microbiol. 54: 768–771.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, T.L. and M.J. Wolin. 1983. Oxidation of hydrogen and reduction of methanol to methane is the sole energy source for a methanogen isolated from human feces. J. Bacteriol. 153: 1051–1055.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, T.L. and M.J. Wolin. 1985. Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch. Microbiol. 141: 116–122.

    CAS  PubMed  Google Scholar 

  • Burggraf, S., K.O. Stetter, P. Rouviere and C.R. Woese. 1991. Methanopyrus kandiert an archaeal methanogen unrelated to all other known meth-anogens. Syst. Appl. Microbiol. 14: 346–351.

    CAS  PubMed  Google Scholar 

  • Lauerer, G., J.K. Kristyansson, T.A. Langworthy, H. König and KO. Stetter. 1986. Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97¡ãC. Syst. Appl. Microbiol. 8: 100–105.

    Google Scholar 

  • Stetter, KO., M. Thomm, J. Winter, G. Wildgruber, H. Huber, W. Zillig, D. Janecovic, H. König, P. Palm and S. Wunderl. 1981. Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an icelandic hot spring. Zentbl. Bakteriol. Mikrobiol. Hyg. C2: 166–178.

    Google Scholar 

  • Boone, D.R., W.B. Whitman and P. Rouviere. 1993. Diversity and taxonomy of methanogens. In Ferry (Editor), Methanogenesis: Ecology, Physiology, Biochemistry, and Genetics, Chapman & Hall, New York, pp. 35–80.

    Google Scholar 

  • Jarrell, K.F. and S.F. Koval. 1989. Ultrastructure and biochemistry of Methanococcus voltae. Crit. Rev. Microbiol. 17: 53–87.

    Google Scholar 

  • Whitman, W.B 1985. Methanogenic bacteria. In Woese and Wolfe (Editors), The Bacteria, Vol. VIII: Archaebacteria, Academic Press, Orlando, pp. 3–84.

    Google Scholar 

  • Boone, D.R., W.B. Whitman and P. Rouviere. 1993. Diversity and taxonomy of methanogens. In Ferry (Editor), Methanogenesis: Ecology, Physiology, Biochemistry, and Genetics, Chapman & Hall, New York, pp. 35–80.

    Google Scholar 

  • Boone, D.R., W.B. Whitman and P. Rouviere. 1993. Diversity and taxonomy of methanogens. In Ferry (Editor), Methanogenesis: Ecology, Physiology, Biochemistry, and Genetics, Chapman & Hall, New York, pp. 35–80.

    Google Scholar 

  • Conway de Macario, E., M.J. Wolin and A.J.L. Macario. 1981. Immunology of archaebacteria that produce methane gas. Science 214: 74–75.

    CAS  PubMed  Google Scholar 

  • Paynter, M.J. and R.E. Hungate. 1968. Characterization of Methanobac-terium mobilis sp. nov., isolated from the bovine rumen. J. Bacteriol. 95: 1943–1951.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rouviere, P.F., L. Mandelco, S. Winker and C.R. Woese. 1992. A detailed phylogeny for the Methanomicrobiales. Syst. Appl. Microbiol. 15: 363–371.

    CAS  PubMed  Google Scholar 

  • Zellner, G., P. Messner, H. Kneifel, B.J. Tindall, J. Winter and E. Stackebrandt. 1989. Methanolacinia gen. nov., incorporating Methanomicrobium paynteri as Methanolacinia paynteri comb. nov. J. Gen. Appl. Microbiol. 35: 185–202.

    CAS  Google Scholar 

  • Boone, D.R., W.B. Whitman and P. Rouviere. 1993. Diversity and taxonomy of methanogens. In Ferry (Editor), Methanogenesis: Ecology, Physiology, Biochemistry, and Genetics, Chapman & Hall, New York, pp. 35–80.

    Google Scholar 

  • Zabel, H.P., H. Konig and J. Winter. 1984. Isolation and characterization of a new coccoid methanogen, Methanogenium tatii new species from a solfataric field on Mount Tatio (Chile). Arch. Microbiol. 137: 505–515.

    Google Scholar 

  • Zellner, G., D.R. Boone, J. Keswani, W.B. Whitman, C.R. Woese, A. Ha-gelstein, B.J. Tindall and E. Stackebrandt. 1999. Reclassification of Methanogenium tationis and Methanogenium liminatans as Methanofollis tationis gen. nov., comb. nov. and Methanofollis liminatans comb. nov. and description of a new strain of Methanofollis liminatans. Int. J. Syst. Bacteriol. 49: 247–255.

    PubMed  Google Scholar 

  • Zellner, G., U.B. Sleytr, P. Messner, H. Kneifel and J. Winter. 1990. Methanogenium liminatans spec, nov., a new coccoid, mesophilic methanogen able to oxidize secondary alcohols. Arch. Microbiol. 153: 287–293.

    CAS  Google Scholar 

  • Rouviere, p., L. Mandelco, S. Winker and C.R. Woese. 1992. A detailed phylogeny for the Methanomicrobiales. Syst. Appl. Microbiol. 15: 363–371.

    CAS  PubMed  Google Scholar 

  • Ollivier, B.M., J.L. Cayol, B.K.C. Patel, M. Magot, M.L. Fardeau and J.L. Garcia. 1997. Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil-producing well. FEMS Microbiol. Lett. 147: 51–56.

    CAS  PubMed  Google Scholar 

  • van Brggen, J.J.A., KB. Zwart, J.G.F. Hermans, E.M. van Hove, C.K Stumm and G.D. Vogels. 1986. Isolation and characterization of Methanoplanus endosymbiosus sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch. Microbiol. 144: 367–374.

    Google Scholar 

  • Wildgruber, G., M. Thomm, H. König, K. Ober, T. Ricchiuto and K.O. Stetter. 1982. Methanoplanus limicola a plate-shaped methanogen representing a novel family, the Methanoplanaceae. Arch. Microbiol. 132: 31–36.

    CAS  Google Scholar 

  • Chumakov, KM., T.N. Zhilina, I.S. Zvyagintseva, A.L. Tarasov and G.A. Zavarzin. 1987. 5S rRNA in archaebacteria. Zh. Obshch. Biol. 48:167–181.

    CAS  Google Scholar 

  • Wilharm, T., T.N. Zhilina and P. Hummel. 1991. DNA-DNA hybridization of methylotrophic halophilic methanogenic bacteria and transfer of Methanococcus halophilus™ to the genus Methanohalophilus as Methanohalophilus halophilus comb. nov. Int. J. Syst. Bacteriol. 41: 558–562.

    Google Scholar 

  • Zhilina, T.N. and T.P. Svetlichnaya. 1989. The ultrafine structure of Methanohalobium evestigatus an extremely halophilic methanogenic bacterium. Mikrobiologiya 58: 312–318.

    CAS  Google Scholar 

  • Zhilina, T.N. and G.A. Zavarzin. 1987. Methanohalobium evestigatus gen. nov. sp. nov., the extremely halophilic methanogenic archaebacter-ium. Dokl. Akad. Nauk. SSSR 293: 464–468.

    CAS  Google Scholar 

  • Zhilina, T.N. and G.A. Zavarzin. 1990. Extremely halophilic, methylotrophic, anaerobic bacteria. FEMS Microbiol. Rev. 87: 315–321.

    CAS  Google Scholar 

  • Konig, H. and K.O. Stetter. 1982. Isolation and characterization of Methanolobus tindarius sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zentbl. Bakteriol. Mikrobiol. Hyg. 1 Abt Orig. C. 3: 478–490.

    Google Scholar 

  • Sowers, K.R. and J.G. Ferry. 1983. Isolation and characterization of a methylotrophic marine methanogen, Methanococcoides methylutens gen. nov., sp. nov. Appl. Environ. Microbiol. 45: 684–690.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sowers, KR., J.L. Johnson and J.G. Ferry. 1984. Phylogenetic relationships among the methylotrophic methane-producing bacteria and emendation of the family Methanosardnaceae. Int. J. Syst. Bacteriol. 34: 444–450.

    CAS  Google Scholar 

  • DasSarma, S. and E.M. Fleischmann (Editors). 1995. Archaea: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Grant, W.D. and H. Larsen. 1989. Extremely halophilic archaeobacteria. In Staley, Bryant, Pfennig and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, 1st ed., Vol. 3, The Williams & Wilkins Co., Baltimore, pp. 2216–2219.

    Google Scholar 

  • Kamekura, M. 1998. Diversity of extremely halophilic bacteria. Extre-mophiles 2: 289–296.

    CAS  Google Scholar 

  • Kates, M. 1993. Membrane lipids of extreme halophiles: biosynthesis, function and evolutionary significance. Experientia (Basel) 49:1027–1036.

    CAS  Google Scholar 

  • Kushner, D.J. 1985. The Halobacteriaceae. In Woese and Wolfe (Editors), The Bacteria: A Treatise on Structure and Function, Vol. VIII. The Archaebacteria, Academic Press, New York, pp. 171–214.

    Google Scholar 

  • Olsen, G.J., C.R. Woese and R. Overbeek. 1994. The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol. 176: 1–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oren, A. 1994. The ecology of the extremely halophilic archaea. FEMS Microbiol. Rev. 13: 415–440.

    CAS  Google Scholar 

  • Oren, A., A. Ventosa and W.D. Grant. 1997. Proposed minimal standards for description of new taxa in the orderHalobacteriales. Int. J. Syst. Bacteriol. 47: 233–238.

    Google Scholar 

  • Tindali, B.J. 1992. The family Halobacteriaceae. In Balows, Trper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed., Vol. 1, Springer-Verlag, New York, pp. 768–808.

    Google Scholar 

  • Grant, W.D. and H. Larsen. 1989. Extremely halophilic archaeobacteria. In Staley, Bryant, Pfennig and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, 1st ed., Vol. 3, The Williams & Wilkins Co., Baltimore, pp. 2216–2219.

    Google Scholar 

  • Hackett, N.R., Y. Bobovnikova and N. Heyrovska. 1994. Conservation of chromosomal arrangement among three strains of the genetically unstable archaeon Halobacterium salinarium. J. Bacteriol. 116: 7711–7718.

    Google Scholar 

  • Kamekura, M. 1998. Diversity of extremely halophilic bacteria. Extre-mophiles 2: 289–296.

    CAS  Google Scholar 

  • Kates, M. 1993. Biology of halophilic bacteria, Part II: Membrane lipids of extreme halophiles: Biosynthesis, function and evolutionary significance. Experientia (Basel) 49: 1027–1036.

    CAS  Google Scholar 

  • Ross, H.N.M. and W.D. Grant. 1985. Nucleic acid studies on halophilic archaebacteria. J. Gen. Microbiol. 131: 165–174.

    CAS  PubMed  Google Scholar 

  • Tindali, B.J. 1992. The family Halobacteriaceae. In Balows, Trper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed., Vol. 1, Springer-Verlag, New York, pp. 768–808.

    Google Scholar 

  • Kamekura, M. 1999. Diversity of members of the family Halobacteriaceae. In Oren (Editor), Microbiology and Biogeochemistry of Hypersaline Environments, CRC Press, Boca Raton, pp. 13–25.

    Google Scholar 

  • Oren, A. 1999. The enigma of square and triangular halophilic bacteria. In Seckbach (Editor), Enigmatic Microorganisms and Life in Extreme Environments, Kluwer Academic Publishers, Dordrecht, pp. 339–355.

    Google Scholar 

  • Tindall, B.J. 1992. The family Halobacteriaceae. In Balows, Triiper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed., Vol. 1., Springer-Verlag, New York, pp. 768–808.

    Google Scholar 

  • Torreblanca, M., E Rodriguez-Valera, G. Juez, A. Ventosa, M. Kamekura and M. Kates. 1986. Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst. Appl. Microbiol. 8: 89–99.

    Google Scholar 

  • Denner, E.B.M., T.J. McGenity, H.J. Busse, W.D. Grant, G. Wanner and H. Stan-Lotter. 1994. Halococcus salifodinae sp. nov., an archaeal isolate from an Austrian salt mine. Int. J. Syst. Bacteriol. 44: 774–780.

    Google Scholar 

  • Larsen, H. 1989. Genus VI. Halococcus. In Staley, Bryant, Pfennig and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, 1st ed., Vol. 3, The Williams & Wilkins Co, Baltimore, pp. 2228–2230.

    Google Scholar 

  • Montero, C.G., A. Ventosa, E Rodriguez-Valera, M. Kates, N. Moldoveanu and E Ruiz-Berraquero. 1989. Halococcus saccharolyticus sp. nov., a new species of extremely halophilic non-alkaliphilic cocci. Syst. Appl. Microbiol. 12: 167–171.

    Google Scholar 

  • Montero, C.G., A. Ventosa, E Rodriguez-Valera and F. Ruiz-Berraquero. 1988. Taxonomic study of non-alkaliphilic halococci. J. Gen. Microbiol. 134: 725–732.

    Google Scholar 

  • Tindall, B.J. 1992. The family Halobacteriaceae. Balows, Trper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed., Vol. 1, Springer-Verlag, New York, pp. 768–808.

    Google Scholar 

  • DasSarma, S. and E.M. Fleischmann. 1995. Archaea: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Kamekura, M. 1999. Diversity of members of the family Halobacteriaceae. In Oren (Editor), Microbiology and Biogeochemistry of Hypersaline Environments, CRC Press, Boca Raton, pp. 13–25.

    Google Scholar 

  • Montalvo-Rodriguez, R., R.H. Vreeland, A. Oren, M. Kessel, C. Betancourt and J. Lopez-Garriga. 1998.Halogeometricum borinquense gen. nov., sp. nov., a novel halophilic archaeon from Puerto Rico. Int. J. Syst. Bacterid. 48: 1305–1312.

    CAS  Google Scholar 

  • Sehgal, S.N. and N.E. Gibbons. 1960. Effect of some metal ions on the growth of Halobacterium cutirubrum. Can. J. Microbiol. 6: 165–169.

    CAS  PubMed  Google Scholar 

  • Kamekura, M. 1999. Diversity of members of the family Halobacteriaceae. In Oren (Editor), Microbiology and Biogeochemistry of Hypersaline Environments, CRC Press, Boca Raton, pp. 13–25.

    Google Scholar 

  • Kamekura, M. and M.L. Dyall-Smith. 1995. Taxonomy of the family Halobacteriaceae and the description of two new generaHalorubrobacterium and Natrialba. J. Gen. Appl. Microbiol. 41: 333–350.

    CAS  Google Scholar 

  • McGenity, T.J. and W.D. Grant. 1995. Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021, and Halobacterium lacusprofundi to the genusHalorubrum gen. nov., as Halorubrum saccharovorum comb, nov.,Halorubrum sodomense comb, nov., Halorubrum trapanicum comb, nov., and Halorubrum lacusprofundi comb. nov. Syst. Appl. Microbiol. 18: 237–243.

    Google Scholar 

  • Kamekura, M. 1999. Diversity of members of the family Halobacteriaceae. In Oren (Editor), Microbiology and Biogeochemistry of Hypersaline Environments, CRC Press, Boca Raton, pp. 13–25.

    Google Scholar 

  • McGenity, T.J., R.T. Gemmell and W.D. Grant. 1998. Proposal of a new halobacterial genus Natrinema gen. nov., with two speciesNatrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov. Int. J. Syst. Bacteriol. 48: 1187–1196.

    PubMed  Google Scholar 

  • Ventosa, A., M.C. Guti¨¦rrez, M. Kamekura and M.L. Dyall-Smith. 1999. Proposal for the transfer of Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL 11 to Haloterrigena turkmenica gen. nov., comb. nov. Int. J. Syst. Bacteriol. 49: 131–136.

    PubMed  Google Scholar 

  • Zvyagintseva, I.S. and A.L. Tarasov. 1987. Extreme halophilic bacteria from saline soils. Mikrobiologiya 56: 839–844.

    Google Scholar 

  • McGenity, T.J., R.T. Gemmell and W.D. Grant. 1998. Proposal of a new halobacterial genus Natrinema gen. nov., with two speciesNatrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov. Int. J. Syst. Bacteriol. 48: 1187–1196.

    PubMed  Google Scholar 

  • Ventosa, A., M.C. Guti¨¦rrez, M. Kamekura and M.L. Dyall-Smith. 1999. Proposal for the transfer of Halococcus turkmenicus, Halobacterium trapanicum JCM 9743 and strain GSL 11 to Haloterrigena turkmenica gen. nov., comb. nov. Int. J. Syst. Bacteriol. 49: 131–136.

    PubMed  Google Scholar 

  • Tindall, B.J., A.A. Mills and W.D. Grant. 1980. An alkalophilic red halo-philic bacterium with a low magnesium requirement from a Kenyan soda lake. J. Gen. Microbiol. 116: 257–260.

    Google Scholar 

  • Xu, Y., P. Zhou and X. Tian. 1999. Characterization of two novel halo-alkaliphilic archaea Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov. Int. J. Syst. Bacteriol. 49: 261–266.

    CAS  PubMed  Google Scholar 

  • Balows, A., H.G. Truper, M. Dworkin, W. Harder and K.H. Schleifer (Editors). 1992. The Prokaryotes. A Handbook of Bacteria: Ecophy-siology, Isolation, Identification, Applications, Springer-Verlag, New York. 4126 pp.

    Google Scholar 

  • Belly, R.T., B.B. Bohlool and T.D. Brock. 1973. The genus Thermoplasma. Ann. N. Y. Acad. Sci. 225: 94–107.

    Google Scholar 

  • Brock, T.D. 1978. Thermophilic Microorganisms and Life at High Temperatures, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Brock, T.D. (Editor). 1986. Thermophiles: General, Molecular, and Applied Microbiology, John Wiley & Sons, New York.

    Google Scholar 

  • Kandler, O. and W. Zillig (Editors). 1986. Archaebacteria ‘85, Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Schleper, C., G. Puhler, I. Holz, A. Gambacorta, D. Janekovic, U. San-tarius, H.P. Klenk and W. Zillig. 1995.Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH O.J. Bacteriol. 177: 7050–7059.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zillig, W. 1991. The OrderThermococcales. In Balows, Triiper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes, Springer-Verlag, New York, pp. 702–706.

    Google Scholar 

  • Erauso, G., A.L. Reysenbach, A. Godfroy, J.R. Meunier, B. Crump, F. Partensky, J.A. Baross, V. Marteinsson, G. Barbier, N.R. Pace and D. Prieur. 1993.Pyrococcus abyssi sp. nov., a new hyperthermophilic ar-chaeon isolated from a deep-sea hydrothermal vent. Arch. Microbiol. 160: 338–349.

    CAS  Google Scholar 

  • Fiala, G. and K.O. Stetter. 1986.Pyrococcus furiosus, sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100¡ãC. Arch. Microbiol. 145: 56–61.

    CAS  Google Scholar 

  • Zillig, W., I. Holz, H.-P. Klenk, J. Trent, S. Wunderl, D. Janekovic, E. Imsel and B. Haas. 1987.Pyrococcus woesei sp. nov., an ultra-thermophilic marine archaebacterium, representing a novel order, Thermococcales. Syst. Appl. Microbiol. 9: 62–70.

    CAS  Google Scholar 

  • Burggraf, S., H.W. Jannasch, B. Nicolaus and K.O. Stetter. 1990. Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing archaebacteria. Syst. Appl. Microbiol. 13: 24–28.

    Google Scholar 

  • Huber, H., H. Jannasch, R. Rachel, T. Fuchs and K.O. Stetter. 1997. Archaeoglobus veneficus sp. nov., a novel facultative chemolithoau to trophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Syst. Appl. Microbiol. 20: 374–380.

    CAS  Google Scholar 

  • Stetter, K.O., G. Lauerer, M. Thomm and A. Neuner. 1987. Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science (Wash., D.C.) 236: 822–824.

    CAS  Google Scholar 

  • Woese, C.R., L. Achenbach, R Rouviere and L. Mandelco. 1991. Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. Syst. Appl. Microbiol. 14: 364–371.

    CAS  Google Scholar 

  • Thauer, R.K. 1998. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144: 2377–2406.

    CAS  PubMed  Google Scholar 

  • Stetter, K.O 2000. Volcanoes, hydrothermal venting, and the origin of life. In Marit and Ernst (Editors), Volcanoes and the Environment, Cambridge University Press, Cambridge, in press.Ferry, J.G. 1993. Methanogenesis: Ecology, Physiology, Biochemistry, and Genetics, Chapman & Hall, New York.

    Google Scholar 

  • Mah, R.A. 1980. Isolation and characterization of Methanococcus mazei. Curr. Microbiol. 3: 321–326.

    Google Scholar 

  • Robinson, R.W. 1986. Life cycles in the methanogenic archaebacterium Methanosarcina mazei. Appl. Environ. Microbiol. 52: 17–27.

    CAS  Google Scholar 

  • Tindali, B.J. 1992. The family Halobacteriaceae. In Balows, Trper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed., Vol. 1, Springer-Verlag, New York, pp. 768–808.

    Google Scholar 

  • Torreblanca, M., E Rodriguez-Valera, G. Juez, A. Ventosa, M. Kamekura and M. Kates. 1986. Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst. Appl. Microbiol. 8: 89–99.

    Google Scholar 

  • Sowers, K.R., S.F. Baron and J.G. Ferry. 1984. Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl. Environ. Microbiol. 47: 971–978.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zinder, S.H. and R.A. Mah. 1979. Isolation and characterization of a thermophilic strain of Methanosarcina unable to use H2-C02 for methanogenesis. Appl. Environ. Microbiol. 38: 996–1008.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boone, D.R., W.B. Whitman and P. Rouvi¨¨re. 1993. Diversity and taxonomy of methanogens. In Ferry (Editor), Methanogenesis: Ecology, Physiology, Biochemistry, and Genetics, Chapman & Hall, New York, pp. 35–80.

    Google Scholar 

  • Jarrell, K.F. and S.F. Koval. 1989. Ultrastructure and biochemistry of Methanococcus voltae. Crit. Rev. Microbiol. 17: 53–87.

    CAS  Google Scholar 

  • Whitman, W.B 1985. Methanogenic bacteria. In Woese and Wolfe (Editors), The Bacteria, Vol. VIII: Archaebacteria, Academic Press, Orlando, pp. 3–84.

    Google Scholar 

  • Boone, D.R., W.B. Whitman and P. Rouvi¨¨re. 1993. Diversity and taxonomy of methanogens. In Ferry (Editor), Methanogenesis: Ecology, Physiology, Biochemistry, and Genetics, Chapman & Hall, New York, pp. 35–80.

    Google Scholar 

  • Boone, D.R., W.B. Whitman and P. Rouvi¨¨re. 1993. Diversity and taxonomy of methanogens. In Ferry (Editor), Methanogenesis: Ecology, Physiology, Biochemistry, and Genetics, Chapman & Hall, New York, pp. 35–80.

    Google Scholar 

  • Boone, D.R., W.B. Whitman and P. Rouvi¨¨re. 1993. Diversity and taxonomy of methanogens. In Ferry (Editor), Methanogenesis: Ecology, Physiology, Biochemistry, and Genetics, Chapman & Hall, New York, pp. 35–80.

    Google Scholar 

  • Conway de Macario, E., M.J. Wolin and A J.L. Macario. 1981. Immunology of archaebacteria that produce methane gas. Science 214: 74–75.

    CAS  PubMed  Google Scholar 

  • Paynter, M J. and R.E. Hungate. 1968. Characterization of Methanobacterium mobilis, sp. nov., isolated from the bovine rumen. J. Bacteriol. 95: 1943–1951.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rouvi¨¨re, P.F., L. Mandelco, S. Winker and C.R. Woese. 1992. A detailed phylogeny for the Methanomicrobiales. Syst. Appl. Microbiol. 15: 363–371.

    Google Scholar 

  • Zenner, G., P. Messner, H. Kneifel, BJ. Tindall, J. Winter and E. Stackebrandt. 1989. Methanolacinia gen. nov., incorporating Methanomicrobium paynteri as Methanolacinia paynteri comb. nov. J. Gen. Appl. Microbiol. 35: 185–202.

    Google Scholar 

  • Boone, D.R., W.B. Whitman and P. Rouvi¨¨re. 1993. Diversity and taxonomy of methanogens. In Ferry (Editor), Methanogenesis: Ecology, Physiology, Biochemistry, and Genetics, Chapman & Hall, New York, pp. 35–80.

    Google Scholar 

  • Zabel, H.P., H. König and J. Winter. 1984. Isolation and characterization of a new coccoid methanogen, Methanogenium tatii, new species from a solfataric field on Mount Tatio (Chile). Arch. Microbiol. 137: 308–315.

    CAS  Google Scholar 

  • Zellner, G., D.R. Boone, J. Keswani, W.B. Whitman, C.R. Woese, A. Hagelstein, &J. Tindall and E. Stackebrandt. 1999. Reclassification of Methanogenium tationis and Methanogenium liminatans as Methanofollis tationis gen. nov., comb. nov. and Methanofollis liminatans comb. nov. and description of a new strain of Methanofollis liminatans. Int. J. Syst. Bacteriol. 49: 247–255.

    PubMed  Google Scholar 

  • Zellner, G., U.B. Sleytr, P. Messner, H. Kneifel and J. Winter. 1990. Methanogenium liminatans,spec. nov., a new coccoid, mesophilic methanogen able to oxidize secondary alcohols. Arch. Microbiol. 153: 287–293.

    CAS  Google Scholar 

  • Rouvi¨¨re, P., L. Mandelco, S. Winker and C.R. Woese. 1992. A detailed phylogeny for the Methanomicrobiales. Syst. Appl. Microbiol. 15: 363–371.

    Google Scholar 

  • Ollivier, B.M., J.L. Cayol, B.K.C. Patel, M. Magot, M.L. Fardeau and J.L. Garcia. 1997. Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium from an oil-producing well. FEMS Microbiol. Lett. 147: 51–56.

    CAS  PubMed  Google Scholar 

  • van Bruggen, JJ.A., K.B. Zwart, J.G.F. Hermans, E.M. van Hove, C.K. Stumm and G.D. Vogels. 1986. Isolation and characterization of Methanoplanus endosymbiosus,sp. nov., an endosymbiont of the marine sapropelic ciliate Metopus contortus Quennerstedt. Arch. Microbiol. 144: 367–374.

    Google Scholar 

  • Wildgruber, G., M. Thomm, H. König, K. Ober, T. Ricchiuto and K.O. Stetter. 1982. Methanoplanus limicola, a plate-shaped methanogen representing a novel family, the Methanoplanaceae. Arch. Microbiol. 132: 31–36.

    CAS  Google Scholar 

  • Balch, W.E., G.E. Fox, L.J. Magrum, C.R. Woese and R.S. Wolfe. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43: 260–296.

    CAS  PubMed  PubMed Central  Google Scholar 

  • DasSarma, S. and E.M. Fleischmann (Editors). 1995. Archaea: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, NY

    Google Scholar 

  • Grant, W.D. and H. Larsen. 1989. Extremely halophilic archaeobacteria. In Staley, Bryant, Pfennig and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, 1st ed., Vol. 3, The Williams & Wilkins Co., Baltimore, pp. 2216–2219.

    Google Scholar 

  • Kates, M. 1993. Membrane lipids of extreme halophiles: biosynthesis, function and evolutionary significance. Experientia (Basel) 49: 1027–1036.

    CAS  Google Scholar 

  • Kushner, DJ. 1985. The Halobacteriaceae. In Woese and Wolfe (Editors), The Bacteria: A Treatise on Structure and Function, Vol. VIII. The Archaebacteria, Academic Press, New York, pp. 171–214.

    Google Scholar 

  • Olsen, G J., C.R. Woese and R. Overbeek. 1994. The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol. 176: 1–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oren, A. 1994. The ecology of the extremely halophilic archaea. FEMS Microbiol. Rev. 13: 415–440.

    CAS  Google Scholar 

  • Oren, A., A. Ventosa and W.D. Grant. 1997. Proposed minimal standards for description of new taxa in the order Halobacteriales. Int. J. Syst. Bacteriol. 47: 233–238.

    Google Scholar 

  • Tindall, B J. 1992. The family Halobacteriaceae. In Balows, Trper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed., Vol. 1, Springer-Verlag, New York, pp. 768–808.

    Google Scholar 

  • Grant, W.D. and H. Larsen. 1989. Extremely halophilic archaeobacteria. In Staley, Bryant, Pfennig and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, 1st ed., Vol. 3, The Williams & Wilkins Co., Baltimore, pp. 2216–2219.

    Google Scholar 

  • Hackett, N.R., Y. Bobovnikova and N. Heyrovska. 1994. Conservation of chromosomal arrangement among three strains of the genetically unstable archaeon Halobacterium salinarium. J. Bacteriol. 176: 7711–7718.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamekura, M. 1999. Diversity of members of the family Halobacteriaceae. In Oren (Editor), Microbiology and Biogeochemistry of Hypersaline Environments, CRC Press, Boca Raton, pp. 13–25.

    Google Scholar 

  • Oren, A. 1999. The enigma of square and triangular halophilic bacteria. In Seckbach (Editor), Enigmatic Microorganisms and Life in Extreme Environments, Kluwer Academic Publishers, Dordrecht, pp. 339–355.

    Google Scholar 

  • Tindall, B J. 1992. The family Halobacteriaceae. In Balows, Tritper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed., Vol. 1., Springer-Verlag, New York, pp. 768–808.

    Google Scholar 

  • Torreblanca, M., F. Rodriguez-Valera, G. Juez, A. Ventosa, M. Kamekura and M. Kates. 1986. Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst. Appl. Microbiol. 8: 89–99.

    Google Scholar 

  • Denner, E.B.M., TJ. McGenity, H J. Busse, W.D. Grant, G. Wanner and H. Stan-Lotter. 1994. Halococcus salifodinae sp. nov., an archaeal isolate from an Austrian salt mine. Int. J. Syst. Bacteriol. 44: 774–780.

    Google Scholar 

  • Larsen, H. 1989. Genus VI. Halococcus. In Staley, Bryant, Pfennig and Holt (Editors), Bergey’s Manual of Systematic Bacteriology, 1st ed., Vol. 3, The Williams & Wilkins Co, Baltimore, pp. 2228–2230.

    Google Scholar 

  • Montero, C.G., A. Ventosa, F. Rodriguez-Valera, M. Kates, N. Moldoveanu and F. Ruiz-Berraquero. 1989. Halococcus saccharolyticus sp. nov., a new species of extremely halophilic non-alkaliphilic cocci. Syst. Appl. Microbiol. 12: 167–171.

    Google Scholar 

  • Montero, C.G., A. Ventosa, E Rodriguez-Valera and F. Ruiz-Berraquero. 1988. Taxonomic study of non-alkaliphilic halococci. J. Gen. Microbiol. 134: 725–732.

    Google Scholar 

  • Tindall, B J. 1992. The family Halobacteriaceae. In Balows, Trper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed., Vol. 1, Springer-Verlag, New York, pp. 768–808.

    Google Scholar 

  • Ventosa, A., M.C. Guti¨¦rrez, M. Kamekura and M.L. Dyall-Smith. 1999. panicum JCM 9743 and strain GSL 11 to Haloterrigena turkmenica gen. Proposal for the transfer of Halococcus turkmenicus,Halobacterium tra- nov., comb. nov. Int. J. Syst. Bacteriol. 49: 131–136.

    Google Scholar 

  • DasSarma, S. and E.M. Fleischmann. 1995. Archaea: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Kamekura, M. 1999. Diversity of members of the family Halobacteriaceae. In Oren (Editor), Microbiology and Biogeochemistry of Hypersaline Environments, CRC Press, Boca Raton, pp. 13–25.

    Google Scholar 

  • Tindall, B J. 1992. The family Halobacteriaceae. In Balows, Trper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes. A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed., Vol. 1, Springer-Verlag, New York, pp. 768–808.

    Google Scholar 

  • Torreblanca, M., E Rodriguez-Valera, G. Juez, A. Ventosa, M. Kamekura and M. Kates. 1986. Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst. Appl. Microbiol. 8: 89–99.

    Google Scholar 

  • Kamekura, M. 1999. Diversity of members of the family Halobacteriaceae. In Oren (Editor), Microbiology and Biogeochemistry of Hypersaline Environments, CRC Press, Boca Raton, pp. 13–25.

    Google Scholar 

  • Kamekura, M. and M.L. Dyall-Smith. 1995. Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrobacterium and Natrialba. J. Gen. Appl. Microbiol. 41: 333–350.

    CAS  Google Scholar 

  • McGenity, T.J. and W.D. Grant. 1995. Transfer of Halobacterium saccharovorum,Halobacterium sodomense, Halobacterium trapanicum NRC 34021, and Halobacterium lacusprofundi to the genus Halorubrum gen. nov., as Halorubrum saccharovorum comb. nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov. Syst. Appl. Microbiol. 18: 237–243.

    Google Scholar 

  • Kamekura, M. 1999. Diversity of members of the family Halobacteriaceae. In Oren (Editor), Microbiology and Biogeochemistry of Hypersaline Environments, CRC Press, Boca Raton, pp. 13–25.

    Google Scholar 

  • McGenity, T.J., R.T. Gemmell and W.D. Grant. 1998. Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov. Int. J. Syst. Bacteriol. 48: 1187–1196.

    PubMed  Google Scholar 

  • Ventosa, A., M.C. Guti¨¦rrez, M. Kamekura and M.L. Dyall-Smith. 1999. Proposal for the transfer of Halococcus turkmenicus, Halobacterium tra-panicum JCM 9743 and strain GSL 11 to Haloterrigena turkmenica gen. nov., comb. nov. Int. J. Syst. Bacteriol. 49: 131–136.

    PubMed  Google Scholar 

  • Zvyagintseva, I.S. and A.L. Tarasov. 1987. Extreme halophilic bacteria from saline soils. Mikrobiologiya 56: 839–844.

    Google Scholar 

  • McGenity, TJ., R.T. Gemmell and W.D. Grant. 1998. Proposal of a new halobacterial genus Natrinema gen. nov., with two species Natrinema pellirubrum nom. nov. and Natrinema pallidum nom. nov. Int. J. Syst. Bacteriol. 48: 1187–1196.

    PubMed  Google Scholar 

  • Ventosa, A., M.C. Guti¨¦rrez, M. Kamekura and M.L. Dyall-Smith. 1999. Proposal for the transfer of Halococcus turkmenicus, Halobacterium trapanicumJCM 9743 and strain GSL 11 to Haloterrigena turkmenica gen. nov., comb. nov. Int. J. Syst. Bacteriol. 49: 131–136.

    PubMed  Google Scholar 

  • Tindall, B.J., A.A. Mills and W.D. Grant. 1980. An alkalophilic red halophilic bacterium with a low magnesium requirement from a Kenyan soda lake. J. Gen. Microbiol. 116: 257–260.

    Google Scholar 

  • Xu, Y, P. Zhou and X. Tian. 1999. Characterization of two novel haloalkaliphilic archaea Natronorubrum bangense gen. nov., sp. nov. and Natronorubrum tibetense gen. nov., sp. nov. Int. J. Syst. Bacteriol. 49: 261–266.

    CAS  PubMed  Google Scholar 

  • Balows, A., H.G. Trper, M. Dworkin, W. Harder and KH. Schleifer (Editors). 1992. The Prokaryotes. A Handbook of Bacteria: Ecophysiology, Isolation, Identification, Applications, Springer-Verlag, New York. 41–26 pp.

    Google Scholar 

  • Belly, R.T., B.B. Bohlool and T.D. Brock. 1973. The genus Thermoplasma. Ann. N. Y. Acad. Sci. 225: 94–107.

    Google Scholar 

  • Brock, T.D. 1978. Thermophilic Microorganisms and Life at High Temperatures, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Brock, T.D. (Editor). 1986. Thermophiles: General, Molecular, and Applied Microbiology, John Wiley & Sons, New York.

    Google Scholar 

  • Kandler, O. and W. Zillig (Editors). 1986. Archaebacteria ‘85, Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Schleper, C., G. Phler, I. Holz, A. Gambacorta, D. Janekovic, U. Santarius, H.P. Klenk and W. Zillig. 1995. Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH O. J. Bacteriol. 177: 7050–7059.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zillig, W. 1991. The Order Thermococcales. In Balows, Trper, Dworkin, Harder and Schleifer (Editors), The Prokaryotes, Springer-Verlag, New York, pp. 702–706.

    Google Scholar 

  • Erauso, G., A.L. Reysenbach, A. Godfroy, J.R. Meunier, B. Crump, E. Partensky, J.A. Baross, V. Marteinsson, G. Barbier, N.R. Pace and D. Prieur. 1993. Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch. Microbiol. 160: 338–349.

    CAS  Google Scholar 

  • Fiala, G. and K.O. Stetter. 1986. Pyrococcus furiosus, sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100¡ãC. Arch. Microbiol. 145: 56–61.

    CAS  Google Scholar 

  • Zillig, W., I. Holz, H.-P. Klenk, J. Trent, S. Wunderl, D. Janekovic, E. Imsel and B. Haas. 1987. Pyrococcus woesei, sp. nov., an ultra-thermophilic marine archaebacterium, representing a novel order, Thermococcales. Syst. Appl. Microbiol. 9: 62–70.

    CAS  Google Scholar 

  • Burggraf, S., H.W. Jannasch, B. Nicolaus and K.O. Stetter. 1990. Archaeoglobus profundus,sp. nov., represents a new species within the sulfate-reducing archaebacteria. Syst. Appl. Microbiol. 13: 24–28.

    Google Scholar 

  • Huber, H., H. Jannasch, R. Rachel, T. Fuchs and K.O. Stetter. 1997. Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Syst. Appl. Microbiol. 20: 374–380.

    CAS  Google Scholar 

  • Stetter, K.O., G. Lauerer, M. Thomm and A. Neuner. 1987. Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science (Wash., D.C.) 236: 822–824.

    CAS  Google Scholar 

  • Woese, C.R., L. Achenbach, P. Rouvi¨¨re and L. Mandelco. 1991. Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. Syst. Appl. Microbiol. 14: 364–371.

    CAS  PubMed  Google Scholar 

  • Thauer, R.K. 1998. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144: 2377–2406.

    CAS  PubMed  Google Scholar 

  • Stetter, KO 2000. Volcanoes, hydrothermal venting, and the origin of life. In Marit and Ernst (Editors), Volcanoes and the Environment, Cambridge University Press, Cambridge, in press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Garrity, G.M. et al. (2001). Phylum All. Euryarchaeota phy. nov.. In: Boone, D.R., Castenholz, R.W., Garrity, G.M. (eds) Bergey’s Manual® of Systematic Bacteriology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21609-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21609-6_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3159-7

  • Online ISBN: 978-0-387-21609-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics