Skip to main content

Abstract

Woodwind instruments, whether excited by vibrating reeds or by air jets, have the common characteristic of using finger holes to change the pitch of the note being played. They share this feature, as we remarked in Chapter 14, with several more or less obsolete lip driven instruments such as cornetts, ophicleides, and serpents. We begin this chapter, therefore, with a rather general discussion of possible bore shapes and finger hole dispositions before looking at particular instruments in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Backus, J. (1961). Vibrations of the reed and air column in the clarinet. J. Acoust Soc. Am. 33, 806–809.

    Article  ADS  Google Scholar 

  • Backus, J. (1963). Small-vibration theory of the clarinet. J. A coust. Soc. Am. 35, 305–313.

    Article  ADS  Google Scholar 

  • Backus, J. (1974). Input impedance curves for the reed woodwind instruments. J. Acoust. Soc. Am. 56, 1266–1279.

    Article  ADS  Google Scholar 

  • Backus, J. (1978). Multiphonic tones in the woodwind instruments. J. Acoust. Soc. Am. 63, 591–599.

    Article  ADS  Google Scholar 

  • Backus, J. (1985). The effect of the player’s vocal tract on woodwind instrument tone. J. Acoust. Soc. Am. 78, 17–20.

    Article  ADS  Google Scholar 

  • Baines, A. (1967). “Woodwind Instruments and their History.” Faber and Faber, London.

    Google Scholar 

  • Bartolozzi, B. (1981). “New Sounds for Woodwinds,” 2nd ed. Oxford Univ. Press, London.

    Google Scholar 

  • Benade, A.H. (1959). On woodwind instrument bores. J. Acoust. Soc. Am. 31, 137–146.

    Article  ADS  Google Scholar 

  • Benade, A.H. (1960a). On the mathematical theory of woodwind finger holes. J. Acoust. Soc. Am. 32, 1591–1608.

    Article  ADS  Google Scholar 

  • Benade, A.H. (1960b). The physics of woodwinds. Scientific American 203 (4), 145–154.

    Article  Google Scholar 

  • Benade, A.H. (1976). “Fundamentals of Musical Acoustics,” pp. 430–504. Oxford Univ. Press, London and New York.

    Google Scholar 

  • Benade, A.H. (1986). Woodwinds: the evolutionary path since 1700, Proc. 12th Intl. Congress Acoustics, Toronto.

    Google Scholar 

  • Benade, A.H., and Kouzoupis, S.N. (1988). The clarinet spectrum: Theory and experiment. J. Acoust. Soc. Am. 83, 292–304.

    Article  ADS  Google Scholar 

  • Benade, A.H., and Larson, C.O. (1985). Requirements and techniques for measuring the musical spectrum of the clarinet. J. Acoust. Soc. Am. 78, 1475–1498.

    Article  ADS  Google Scholar 

  • Benade, A.H., and Lutgen, S.J. (1988). The saxophone spectrum. J. Acoust. Soc. Am. 83, 1900–1907.

    Article  ADS  Google Scholar 

  • Benade, A.H., and Richards, W.B. (1983). Oboe normal mode adjustment via reed-staple proportioning. J. Acoust. Soc. Am. 73, 1794–1803.

    Article  ADS  Google Scholar 

  • Carse, A. (1939). “Musical Wind Instruments.” Macmillan, London. Reprinted by Da Capo Press, New York, 1965.

    Google Scholar 

  • Chung, J.V., and Blaser, D.A. (1980). Transfer function method of measuring in-duct acoustic properties: I. Theory; II. Experiment. J. Acoust. Soc. Am. 68, 907–913 and 914–921.

    Google Scholar 

  • Clinch, P.G., Troup, G.J., and Harris, L. (1982). The importance of vocal tract resonance in clarinet and saxophone performance—A preliminary account. Acustica 50, 280–284.

    Google Scholar 

  • Dalmont, J.P., Gazengel, B., Gilbert, J., and Kergomard, J. (1995). Some aspects of tuning and clean intonation in reed instruments. Appl. Acoust. 46, 19–60.

    Article  Google Scholar 

  • Firth, I.M., and Sillitto, H.G. (1978). Acoustics of the Highland bagpipe chanter and reed. Acustica 40, 310–315.

    Google Scholar 

  • Fletcher, N.H. (1976). “Physics and Music.” Heinemann, Melbourne.

    Google Scholar 

  • Fletcher, N.H. (1978). Mode locking in nonlinearly excited inharmonic musical oscillators. J. Acoust. Soc. Am. 64, 1566–1569.

    Article  ADS  Google Scholar 

  • Fuks, L., and Sundberg, J. (1996). Blowing pressures in reed woodwind instruments. Quart. Prog. Status Rep., Speech Music and Hearing Royal Inst. Tech., Stockholm. No. 3 /1996, pp. 41–56.

    Google Scholar 

  • Gazengel, B., Gilbert, J., and Amir, N. (1995). Time domain simulation of single reed wind instrument. From the measured input impedance to the synthesis signal. Where are the traps? Acta Acustica 3, 445–472.

    Google Scholar 

  • Gilbert, J., Kergomard, J., and Ngoya, E. (1989). Calculation of the steady-state oscillations of a clarinet using the harmonic balance technique. J. Acoust. Soc. Am. 86, 35–41.

    Article  ADS  Google Scholar 

  • Harris, C.M., Eisenstadt, M., and Weiss, M.R. (1963). Sounds of the Highland bagpipe. J. Acoust. Soc. Am. 35, 1321–1327.

    Article  ADS  Google Scholar 

  • Ishibashi, M., and Idogawa, T. (1987). Input impulse response of the bassoon. J. Acoust. Soc. Japan. (E) 8, 139–144.

    Article  Google Scholar 

  • Johnston, R, Clinch, P.G., and Troup, G.J. (1986). The role of vocal tract resonance in clarinet playing. Acoustics Australia 14, 67–69.

    Google Scholar 

  • Keefe, D.H. (1982a). Theory of the single woodwind tone hole. J. Acoust. Soc. Am. 72, 676–687.

    Article  ADS  Google Scholar 

  • Keefe, D.H. (1982b). Experiments on the single woodwind tone hole. J. Acoust. Soc. Am. 72, 688–699.

    Article  ADS  Google Scholar 

  • Keefe, D.H., and Laden, B. (1991). Correlation dimension of woodwind multiphonic tones. J. Acoust. Soc. Am. 90, 1754–1765.

    Article  ADS  Google Scholar 

  • Kobata, T., and Idogawa, T. (1993). Pressure in the mouthpiece, reed opening, and air-flow speed at the reed opening of a clarinet artificially blown. J. Acoust. Soc. Japan (E) 14, 417–428.

    Article  Google Scholar 

  • Lehman, P.R. (1964). Harmonic structure of the tone of the bassoon. J. Acoust. Soc. Am. 36, 1649–1653.

    Article  ADS  Google Scholar 

  • Lenihan, J.M.A. and McNeil, S. (1954). An acoustical study of the Highland bagpipe. Acustica 4, 231–232.

    Google Scholar 

  • Meyer, J. (1978). “Acoustics and the Performance of Music,” pp. 153–160. Verlag Das Musikinstrument, Frankfurt am Main.

    Google Scholar 

  • Nederveen, C.J. (1969). “Acoustical Aspects of Woodwind Instruments.” Frits Knuf, Amsterdam. (Reprinted by Nothern Illinois University Press, Dekalb, 1998.)

    Google Scholar 

  • Plitnik, G.R. and Strong, W.J. (1979). Numerical method for calculating input impedances of the oboe. J. Acoust. Soc. Am. 65, 816–825.

    Article  ADS  Google Scholar 

  • Pratt, R.L., Elliott, S.J., and Bowsher, J.M. (1977). The measurement of the acoustic impedance of brass instruments. Acustica 38, 236–245.

    Google Scholar 

  • Rice, A.R. (1984). Clarinet fingering charts, 1732–1816. Galpin Soc. J. 37, 16–41.

    Google Scholar 

  • Schumacher, R.T. (1978). Self-sustained oscillations of the clarinet: An integral equation approach. Acustica 40, 298–309.

    MathSciNet  MATH  Google Scholar 

  • Schumacher, R.T. (1981). Ab initio calculations of the oscillations of a clarinet. Acustica 48, 71–85.

    Google Scholar 

  • Shimizu, M., Naoi, T., and Idogawa, T. (1989). Vibrations of the reed and air column in the bassoon. J. Acoust. Soc. Japan 10, 269–278.

    Article  Google Scholar 

  • Smith, R.A., and Mercer, D.M.A., (1974). Possible causes of woodwind tone colour, J. Sound Vibr. 32, 347–358.

    Article  ADS  Google Scholar 

  • Sommerfeld, S. and Strong, W. (1988). Simulation of a player-clarinet system. J. Acoust. Soc. Am. 83, 1908–1918.

    Article  ADS  Google Scholar 

  • Stewart, S.E., and Strong, W.J. (1980). Functional model of a simplified clarinet. J. Acoust. Soc. Am. 68, 109–120.

    Article  ADS  Google Scholar 

  • Thompson, S.C. (1979). The effect of the reed resonance on woodwind tone production. J. Acoust. Soc. Am. 66, 1299–1307.

    Article  ADS  Google Scholar 

  • Wilson, T.A., and Beavers, G.S. (1974). Operating modes of the clarinet. J. Acoust. Soc. Am. 56, 653–658.

    Article  ADS  Google Scholar 

  • Worman, W.E. (1971). Self-sustained nonlinear oscillations of medium amplitude in clarinet-like systems. Ph.D. Thesis, Case Western Reserve University, Cleveland, Ohio.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fletcher, N.H., Rossing, T.D. (1998). Woodwind Reed Instruments. In: The Physics of Musical Instruments. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21603-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21603-4_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3120-7

  • Online ISBN: 978-0-387-21603-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics