Advertisement

New Raman Fibers

  • Evgeny M. Dianov
Part of the Springer Series in Optical Sciences book series (SSOS, volume 90/1)

Abstract

The Raman scattering of light is one of the oldest and most well-studied optical phenomena. It was discovered more than 70 years ago and was named after one of the authors of this discovery. In 1928 C. V. Raman and K. S. Krishnan published the paper in which they described light scattering in liquids, the frequency of the scattering light being less than the frequency of the initial light [1]. The same year Russian physicists G. S. Landsberg and L. I. Mandelstam observed independently a similar light scattering in quartz [2].

Keywords

Stimulate Raman Scattering Optical Loss Optical Fiber Communication Raman Laser Tellurite Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C.V. Raman and K.S. Krishnan, A new type of secondary radiation, Nature, 121:501–502, 1928.ADSCrossRefGoogle Scholar
  2. [2]
    G.S. Landsberg and L.I. Mandelstam, Eine neue Ersheinungen bei der Lichtzerstrenung in Kristallen, Naturwissenchaften, 16:557, 1928.CrossRefGoogle Scholar
  3. [3]
    N. Blombergen, The stimulated Raman effect, Amer. J. Phys., 35:989–1023, 1967.CrossRefADSGoogle Scholar
  4. [4]
    E.M. Dianov, P.V. Mamyshev, A.M. Prokhorov, and V.N. Serkin, Nonlinear effects in optical fibers. In Laser Science and Technology-International Handbook, vol. 6, Harwood Academic Publishers GmBH, Chur, Switzerland, 1989.Google Scholar
  5. [5]
    R.H. Stolen, E.P. Ippen, and A.R. Tynes, Raman oscillation in glass optical waveguide, Appl. Phys. Lett., 20:62–63, 1972.CrossRefADSGoogle Scholar
  6. [6]
    M. Hass, Raman spectra of vitreous silica, germania and sodium silicate glasses, J. Phys. Chem. Solids, 31:415–422, 1970.CrossRefADSGoogle Scholar
  7. [7]
    E.P. Ippen, Low-loss quasi-CW Raman oscillator, Appl. Phys. Lett., 16:303–305, 1970.CrossRefADSGoogle Scholar
  8. [8]
    R.H. Stolen, E.P. Ippen, and A.R. Tynes, Raman gain in glass optical waveguides, Appl. Phys. Lett., 22:276–278, 1973.CrossRefADSGoogle Scholar
  9. [9]
    G.E. Walrafen, and J. Stone, “Raman spectral characterization of pure and doped fused silica optical fibers,” Appl. Spectro. 29:337–338, 1975.CrossRefADSGoogle Scholar
  10. [10]
    V.V. Grigoryants, B.L. Davydov, M.E. Zhabotinski, V.F. Zolin, G.A. Ivanov, V.I. Smirnov, and Y.K. Chamorovski, Spectra of stimulation Raman scattering in silica fiber waveguides, Optic. Quantum Electron, 9:351–352, 1977.CrossRefGoogle Scholar
  11. [11]
    F.L. Galeener, J.C. Mikkelsen, and R.H. Geils, The relative Raman cross-section of vitreous SiO2, GeO2, B2O3 and P2O5, Appl. Phys. Lett., 32:34–36, 1978.CrossRefADSGoogle Scholar
  12. [12]
    N. Shibata, M. Horigudhi, and T. Edahiro, Raman spectra of binary high silica glasses and fibers containing GeO2, P2O5 and B2O3, J. Non-Cryst. Solids, 45:115–126, 1981.CrossRefADSGoogle Scholar
  13. [13]
    A.R. Chraplyvy, J. Stone, and C.A. Barrus, Optical gain exceeding 35 dB at 1.56 μm due to stimulated Raman scattering by molecular D2 in a solid silica optical fiber, Opt. Lett., 8:415–417, 1983.ADSCrossRefGoogle Scholar
  14. [14]
    K. Nassau, D.L. Chadwick, and A.E. Miller, Arsenic-containing heavy-metal oxide glasses, J. Non-Cryst. Solids, 93:115–124, 1987.CrossRefADSGoogle Scholar
  15. [15]
    A.E. Miller, K. Nassau, K.B. Lyons, and M.E. Lines, The intensity of Raman scattering in heavy-metal oxides, J. Non-Cryst. Solids, 99:289–307, 1988.CrossRefADSGoogle Scholar
  16. [16]
    S.T. Davey, D.L. Williams, B.J. Ainslie, W.J.M. Rothwell, and B. Wakefield, Optical gain spectrum of GeO2-SiO2 Raman fiber amplifiers, IEE Proc. Pt. J, 136:301–306, 1989.Google Scholar
  17. [17]
    K. Suzuki, K. Noguchi, and N. Uesugi, Selective stimulated Raman scattering in highly P2O5-doped silica single-mode fibers, Opt. Lett., 11:656–658, 1986.ADSCrossRefGoogle Scholar
  18. [18]
    Annual Report of General Physics Institute of the Russian Academy of Sciences for 1993, section: Optical fiber communication, integrated optics, January, 7, 1994; E.M. Dianov, D.G. Fursa, A.A. Abramov, M.I. Belovolov, M.M. Bubnov, A.V. Shipulin, A.M. Prokhorov, G.G. Devyatykh, A.N. Guryanov, and V.F. Khopin, Low-loss high germania-doped fiber: A promising gain medium for 1.3μm Raman amplifier. In Proceedings of the’ Twentieth European Conference on Optical Communications, vol. 1, 427-430, 1994.Google Scholar
  19. [19]
    S. Grubb, T. Erdogan, V. Mizrahi, T. Strasser, W.Y. Cheung, W.A. Reed, P.J. Lemaire, A.E. Miller, S.G Kosinski, G Nikolak, and P.C. Becker, 1.3μm cascaded Raman amplifier in germanosilicate fibers, Proc. Top. Meet. Opt. Ampl. Appl., (Brekenridge), PD3-1, 187–190, 1994.Google Scholar
  20. [20]
    E.M. Dianov, Raman fiber amplifiers, Proc. SPIE, 4083:90–100, 2000.CrossRefADSGoogle Scholar
  21. [21]
    E.M. Dianov, M.V. Grekov, I.A. Bufetov, V.M. Mashinsky, O.D. Sazhin, A.M. Prokhorov, G.G. Devyatykh, A.N. Guryanov, and V.F. Khopin, Highly efficient 1.3 μm Raman fiber amplifier, Electron. Lett., 34:669–670, 1998.CrossRefGoogle Scholar
  22. [22]
    S.G. Grubb, T. Strasser, W.Y. Cheung, W.A. Reed, V Mizrahi, T. Erdogan, P.J. Lemaire, A.M. Vengsarkar, D.J. DiGiovanni, D.W. Peckman, and B.H. Rockney, High-power 1.48 μm cascaded Raman laser in germanosilicate fibers, Proc. Top. Meet. Opt. Ampl. Appl. (Davos), SaA4, 197–199, 1995.Google Scholar
  23. [23]
    E.M. Dianov, M.V. Grekov, I.A. Bufetov, S.A. Vasiliev, O.I. Medvedkov, V.G. Plotnichenko, V.V. Koltashev, A.V. Belov, M.M. Bubnov, S.L. Semjonov, and A.M. Prokhorov, CW high power 1.24μm and 1.48μm Raman lasers based on low-loss phosphosilicate fibers, Electron. Lett., 33:1542–1544, 1997.CrossRefGoogle Scholar
  24. [24]
    E.M. Dianov, I.A. Bufetov, M.M. Bubnov, A.V. Shubin, S.A. Vasiliev, O.I. Medved kov, S.L. Semjonov, M.V. Grekov, V.M. Paramonov, A.N. Guryanov, V.F. Khopin, D. Varelas, A. Iocco, D. Costantini, H.G Limberger, and R.P. Salathe, CW highly efficient 1.24μm Raman laser based on low-loss phosphosilicate fiber. In Optical Fiber Communications Conference, Technical Digest, PD-25, San Jose, 1999; V.I. Karpov, E.M. Dianov, V.M. Paramonov, O.I. Medvedkov, M.M. Bubnov, S.L. Semjonov, S.A. Vasiliev, V.N. Protopopov, O.N. Egorova, V.F. Khopin, A.N. Guryanov, M.P. Bachinski, and W.R.L. Clements, Laser-diode pumped phosphosilicate-fiber Raman laser with output power of 1 W at 1.48μm, Opt. Lett., 24:887-889, 1999.Google Scholar
  25. [25]
    E.M. Dianov, and A.M. Prokhorov, Medium-power CW Raman fiber lasers, IEEE J. Selected Topics Quantum Electron., 6:1022–1028, 2000.CrossRefGoogle Scholar
  26. [26]
    Ch. Fludger, A. Maroney, N. Jolley, and R. Mears, An analysis of the improvement in OSNR from distributed Raman amplifiers using modern transmission fibers, In Optical Fiber Communications Conference, Technical Digest (Baltimore), 100–102, 2000.Google Scholar
  27. [27]
    L.E. Nelson, Optical fiber properties for long-haul transmission. In Proceedings of the 27th European Conference on Optical Communications, (Amsterdam), 346–349, 2001.Google Scholar
  28. [28]
    F Koch, S.A.E. Lewis, S.V. Chernikov, and J.R. Taylor, Broadband Raman gain characterization in various optical fibers, Electron. Lett., 37:1437–1439, 2001.CrossRefGoogle Scholar
  29. [29]
    V.L. da Silva, and J.R. Simpson, Comparison of Raman efficiencies in optical fibers, Optical Fiber Communications Conference. Technical Digest (San Jose), WK13, 1994.Google Scholar
  30. [30]
    D. Mahgerefteh, D.L. Butler, J. Goldhar, B. Rosenberg, and G.L. Burdge, Technique for measurement of the Raman gain coefficient in optical fibers, Opt. Lett., 21:2026–2028, 1996.ADSCrossRefGoogle Scholar
  31. [31]
    Y. Akasaka, I. Morita, M-C. Ho, M.E. Marhic, and L.G. Kazjvsky, Characteristics of optical fibers for discrete Raman amplifiers. In Proceedings of the 25th European Conference on Optical Communication, vol. I, 288–289, 1999.Google Scholar
  32. [32]
    I.A. Bufetov, M.M. Bubnov, V.B. Neystruev, V.M. Mashinsky, A.V. Shubin, M.V. Grekov, A.N. Guryanov, V.F. Khopin, E.M. Dianov, and A.M. Prokhorov, Raman gain properties of optical fibers with a high Ge-doped silica core and standards optical fibers, Laser Phys., 11:130–133, 2001.Google Scholar
  33. [33]
    J. Bromage, K. Rottwitt, and M.E. Lines, A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles, IEEE Photon. Technol. Lett., 14:24–26, 2002.CrossRefADSGoogle Scholar
  34. [34]
    I. Flammer, C. Martinelli, and Ph. Guenot, Raman gain prediction in germano-silicate single mode fibers, Proc. Top. Meet. Opt. Ampl. Appl. (Vancouver), OMC2, 2002.Google Scholar
  35. [35]
    K.J. Cordina, and C.R.S. Fludger, Changes in Raman gain coefficient with pump wavelength in modern transmission fibers, Proc. Top. Meet. Opt. Ampl. Appl. (Vancouver), OMC3, 2002.Google Scholar
  36. [36]
    E.M. Dianov, I.A. Bufetov, M.M. Bubnov, M.V Grekov, S.A. Vasiliev, NS O.I. Medvedkov, Three-cascaded 1407-nm Raman laser based on phosphorous-doped silica fiber, Opt. Lett., 25:402–404, 2000.ADSCrossRefGoogle Scholar
  37. [37]
    P.St.J. Russel, J.-L. Archabault, and L. Reekie, Fiber gratings, Phys. World, 41–46, (Oct.), 1993.Google Scholar
  38. [38]
    B. Malo, J. Albert, F Bilodeau, D.C. Johnson, and K.O. Hill, Photosensitivity in phosphorus-doped silica glass and optical waveguides, Appl. Phys. Lett., 65:394–396, 1994.CrossRefADSGoogle Scholar
  39. [39]
    T. Kitagawa, K.O. Hill, D.C. Johnson, B. Malo, J. Albert, S. Theriault, and F Bilodeau, Photosensitivity in P2O5-SiO2 waveguides and its application to Bragg reflectors in single frequency Er3+ doped planar waveguide laser, Optical Fiber Communications Conference, Technical Digest, San Jose, PD-17, 79–81, San Jose, 1994.Google Scholar
  40. [40]
    A.A. Rybaltovsky, Y.V. Larionov, S.L. Semjonov, V.G Plotnichenko, E.B. Kryukova, Y.N. Pyrkov, M.M. Bubnov, and E.M. Dianov, Relation between UV-induced refractive index and absorption in phosphosilicate optical fibers. In Proceedings of Bragg Gratings, Photosensitivity and Poling in Glass Waveguides Topical Meeting, (Stresa) BThA3, 2001.Google Scholar
  41. [41]
    S.T. Davey, D.L. Williams, D.M. Spirit, and B.J. Ainslie, The fabrication of low-loss high NA silica fibers for Raman amplification, Proc. SPIE, 1171:181–191, 1989.ADSGoogle Scholar
  42. [42]
    S. Sudo and H. Itoh, Efficient non-linear optical fibers and their applications, Opt. Quantum Electron., 22:187–212, 1990.CrossRefGoogle Scholar
  43. [43]
    M. Onishi, C. Fukuda, H. Kanamori, and M. Nishimura, High NA double-clad dispersion compensating fiber for WDM systems. In Proceedings of the Twentieth European Conference on Optical Communications, 681–684, 1994.Google Scholar
  44. [44]
    A.A. Abramov, M.M. Bubnov, E.M. Dianov, S.L. Semjonov, A.G Shchebunjaev, A.N. Guryanov, and V.F. Khopin, The effect of fluorine co-doping on scattering and absorption properties of highly germanium-doped silica glass. In Proceedings of the Seventeenth International Congress on Glass, vol. 7, 70–75, 1995.Google Scholar
  45. [45]
    E.M. Dianov, V.M. Mashinsky, V.B. Neustruev, O.D. Sazhin, A.N. Guryanov, V.F. Khopin, N.N. Vechkanov, and S.V. Lavrishchev, Origin of excess loss in single-mode optical fibers with high GeO2-doped silica core, Opt. Fiber Technology, 3:77–86, 1997.CrossRefADSGoogle Scholar
  46. [46]
    M. Onishi, T. Okuno, T. Kashiwada, S. Ishikawa, N. Akasaka, and M. Nishimura, Highly nonlinear dispersion shifted fiber and its application to broadband wavelength converter. In Proceedings of the 23rd European Conference on Optical Communication, 115–118, 1997.Google Scholar
  47. [47]
    M. Onishi, T. Kashiwada, Y. Ishiguro, Y. Koyano, M. Nishimura, and H. Kanamori, High-performance dispersion-compensating fibers, FiberIntegrated Optics, 16:277–285, 1997.Google Scholar
  48. [48]
    M.M. Bubnov, E.M. Dianov, O.N. Egorova, S.L. Semjonov, A.N. Guryanov, L.A. Ketkova, and V.F. Khopin, Influence of fluorine codoping on optical losses in Ge-and P-doped fibers, Proc. SPIE, 4216:164–173, 2001.CrossRefADSGoogle Scholar
  49. [49]
    M.M. Bubnov et al., Unpublished results.Google Scholar
  50. [50]
    K. Suzuki and M. Nakazawa, Raman amplification in P2O5-doped optical fiber, Opt. Lett., 13:666–668, 1988.ADSCrossRefGoogle Scholar
  51. [51]
    M.M. Bubnov, E.M. Dianov, O.N. Egorova, S.L. Semjonov, A.N. Guryanov, V.F. Khopin, and E.M. DeLiso, Fabrication and investigation of highly phosphorus-doped fibers for Raman lasers, Proc. SPIE, 4083:12–22, 2000.CrossRefADSGoogle Scholar
  52. [52]
    O.N. Egorova, M.M. Bubnov, I.A. Bufetov, E.M. Dianov, A.N. Guryanov, V.F. Khopin, S.L. Semjonov, and A.V Shubin, Phosphosilicate-core single-mode fibers intended for use as active medium of Raman lasers and amplifiers, Proc. SPIE, 4216:32–39, 2001.CrossRefADSGoogle Scholar
  53. [53]
    E.M. Dianov, I.A. Bufetov, M.M. Bubnov, M.V. Grekov, S.A. Vasiliev, O.I. Medvedkov, A.V. Shubin, A.N. Guryanov, V.F. Khopin, M.V. Yashkov, E.M. DeLiso, and D.L. Butler, 1.3 μm Raman fiber amplifier, Proc. SPIE, 4083:101–110, 2000.CrossRefADSGoogle Scholar
  54. [54]
    R. Kashyap and K.J. Blow, Observation of catastrophic self-propelled self-focusing in optical fibers, Electron. Lett., 24;47–48, 1988.CrossRefADSGoogle Scholar
  55. [55]
    R. Kashyap, A. Sayles, and G.F. Cornwell, Heat flow modeling and visualization of catastrophic self-propagating damage in single-mode optical fibers at low powers, Proc. SPIE, 2966:586–591, 1997CrossRefADSGoogle Scholar
  56. [56]
    D.D. Davis, S.C. Mettler, and D.J. DGiovanni, A comparative evaluation of fiber fuse models, Proc. SPIE, 2966:592–606, 1997.CrossRefADSGoogle Scholar
  57. [57]
    E.M. Dianov, I.A. Bufetov, V.G. Plotnichenko, A.A. Frolov, V.M. Mashinsky, G.E. Snopatin and M.F. Churbanov, Catastrophic destruction of optical fibers of various composition under the laser radiation, Quantum Electron., 32:476–478, 2002.CrossRefADSGoogle Scholar
  58. [58]
    H. Rawson, Inorganic glass forming systems, London and New York: Academic, 1967.Google Scholar
  59. [59]
    R. Olshansky and G.W. Scherer, High GeO2 optical waveguides. In Proceedings of the Fifth European Confernece on Optical Communication, (Amsterdam) 12.5.1-12.5.3, 1979.Google Scholar
  60. [60]
    G.G. Devyatykh, E.M. Dianov, N.S. Karpychev, S.M. Mazavin, V.M. Mashinsky, V.B. Neustruev, A.V. Nikolaichik, A.M. Prokhorov, A.I. Ritus, N.I. Sokolov, and A.S. Yushin, Material dispersion and Rayleigh scattering in glassy germanium dioxide, a substance with promising applications in low-loss optical fibre waveguides, Kvantovaya electronica, 7:1563–1566, 1980(in Russian); Sov. J. Quant. Electron., 10:900-902, 1981 (translation).Google Scholar
  61. [61]
    E.M. Dianov, V.M. Mashinsky, and V.B. Neustruev, Estimation of the intrinsic optical losses of germanium-oxide glass, Kratkie soobsheniyapofisike (Brief reports on physics), N 3:46–49, 1981 (Lebedev Physics Institute, USSR Academy of Sciences, Moscow).Google Scholar
  62. [62]
    K. Sanada, T. Moriyama, T. Shioda, O. Fukuda, K. Inada, K. Chida, Behavior of GeO2 in dehydration process of VAD method. In Proceedings of the Seventh European Conference on Optical Communication, 2.1.1–2.1.4, 1981.Google Scholar
  63. [63]
    H. Takahashi, I. Sugimoto, T. Sato, and S. Yoshida, GeO2-Sb2O3 glass optical fibers for 2–3 μm fabricated by VAD method, In Proc. SPIE, 320, Advances in Infrared fibers, II, 88–92, 1982.ADSGoogle Scholar
  64. [64]
    H. Takahashi, I. Sugimoto, and T. Sato, Germanium-oxide glass optical fibre prepared by VAD method, Electron. Lett., 18:398–399, 1982.CrossRefGoogle Scholar
  65. [65]
    Y Fujii, H. Takahashi, H. Nakamura, T. Takabayashi, and I. Sugimoto, Efficient single-pass Raman generation in a GeO2 optical fiber. In Optical Fiber Communications Conference, Technical Digest, W12, 92–93, 1983.Google Scholar
  66. [66]
    H. Takahashi and I. Sugimoto, Decreased losses in germanium-oxide glass optical fiber prepared by VAD method, Japan J. Appl. Phys., 22:L139–L140, 1983.CrossRefADSGoogle Scholar
  67. [67]
    H. Takahashi and I. Sugimoto, Silicone-resin-clad germanium-oxide glass optical fiber, Japan J. Appl Phys., 22:L313–L314, 1983.CrossRefADSGoogle Scholar
  68. [68]
    H. Takahashi, I. Sugimoto, and S. Yoshida, Low-loss germanium-oxide glass optical fiber. In Proceedings of the ninth European Conference on Optical Communication, 61–64, 1983.Google Scholar
  69. [69]
    H. Takahashi and I. Sugimoto, A germanium-oxide glass optical fiber prepared by VAD method, J. Lightwave Technol., LT-2:613–616, 1984.ADSCrossRefGoogle Scholar
  70. [70]
    J. Chang, H. Takahashi, I. Sugimoto, and A. Oyobe, Measurement of chromatic dispersion with a GeO2 fiber Raman laser. In Optical Fiber Communication Conference, Technical Digest, TuD3, 34–35, 1985.Google Scholar
  71. [71]
    H. Takahashi, J. Chang, H. Nakamura, I. Sugimoto, T. Takabayashi, and A. Oyobe, Efficient single-pass Raman generation in a GeO2 optical fiber and its application to measurement of chromatic dispersion, Opt. Lett., 11:383–385, 1986.ADSCrossRefGoogle Scholar
  72. [72]
    H. Nakamura, S. Shibuya, I. Sugimoto, H. Takahashi, and Y. Mitsuhashi, Fiber Raman laser emission in a pure GeO2 glass fiber. In Proceedings of the Twelfth European Conference on Optical Communication, 11–14, 1986.Google Scholar
  73. [73]
    T. Hosaka, S. Sudo, and K. Okamoto, Dispersion of pure GeO2 glass core and F-doped GeO2 glass cladding single-mode optical fibre, Electron. Lett., 23:24–26, 1987.CrossRefGoogle Scholar
  74. [74]
    A.S. Davison and I.H. White, Highly efficient linearly polarized Raman generation in a germania-core optical fiber, Electron. Lett., 23:1343–1345, 1987.CrossRefGoogle Scholar
  75. [75]
    A.-M. Peder-Gothoni and M. Leppihalme, GeO2-core/SiO2-cladding optical fiber made by MCVD process for stimulated Raman applications, Appl. Phys., B42:45–49, 1987.ADSGoogle Scholar
  76. [76]
    T. Hosaka, S. Sudo, H. Itoh, and K. Okamoto, Single-mode fibers with extremely high-Δ and small-dimention pure GeO2 core for efficient nonlinear optical applications, Electron. Lett., 24:770–771, 1988.CrossRefGoogle Scholar
  77. [77]
    I.A. Bufetov et al. Unpublished results.Google Scholar
  78. [78]
    W. Vogel, H. Bürger, B. Müller, G. Zerge, W. Müller, and K. Forkel, Untersuchungen an Telluritgläsern, Silikattechnik, 25:205–209, 1974.Google Scholar
  79. [79]
    J.Y Boniort, C. Brehm, P.H. Dupont, D. Guignot, and C. LeSergent, Infrared glass optical fibers for 4 and 10 micron bands. In Proceedings of the Sixth European Conference on Optical Communication, 61–64, 1980.Google Scholar
  80. [80]
    A. Mori, H. Masuda, K. Shikano, K. Oikawa, K. Kato, and M. Shimizu, Ultra-wideband tellurite-based Raman fiber amplifier, Electron. Lett., 37:1442–1443, 2001.CrossRefGoogle Scholar
  81. [81]
    H. Masuda, A. Mori, K. Shikano, K. Oikawa, K. Kato, and M. Shimizu, Ultra-wideband hybrid tellurite/silica fiber Raman amplifier. In Optical Fiber Communication Conference, Technical Digest, 388–390, 2002.Google Scholar
  82. [82]
    H. Masuda, A. Mori, S. Aozasa, and M. Shimizu, TDFA and ultra-wide band amplifiers, Proc. Top Meet. Opt. Ampl. Appl., Vancouver, OTuC1, 2002.Google Scholar
  83. [83]
    H. Masuda, A. Mori, K. Shikano, K. Oikawa, K. Kato, and M. Shimizu, Ultra-wideband Raman amplifier using tellurite and silica fibers, Electron. Lett., 38:867–868, 2002.CrossRefGoogle Scholar
  84. [84]
    H. Bürger, K. Kneipp, H. Hobert. W. Vogel, V Kozhukharov, and S. Neov, Glass formation, properties and structure of glasses in the TeO2-ZnO system, J. Non.-Cryst. Solids, 151:134–142, 1992.CrossRefGoogle Scholar
  85. [85]
    Optical Fiber Communication Conference, Technical Digest, 2002.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • Evgeny M. Dianov

There are no affiliations available

Personalised recommendations