Dispersion-Compensating Fibers for Raman Applications

  • L. Grüner-Nielsen
  • Y. Qian
Part of the Springer Series in Optical Sciences book series (SSOS, volume 90/1)


Dispersion-compensating fibers (DCF) are the most widely used technology for dispersion compensation. The idea to additionally use the DCF as a Raman gain medium was originally proposed by Hansen et al. in 1998 [1]. This was quickly followed by Emori et al., [2], who demonstrated a broadband lossless DCF using multiple-wavelength Raman pumping. DCF is a good Raman gain medium, due to a relatively high germanium doping level and a small effective area. Normally, a discrete Raman amplifier will contain several kilometers of fiber, adding extra dispersion to the system that must be handled in the overall dispersion management. Dispersion-compensating Raman amplifiers integrate two key functions, dispersion compensation and discrete Raman amplification, into a single component.


Pump Power Dispersion Compensation Raman Gain Relative Intensity Noise Dispersion Slope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P.B. Hansen, G. Jacobovitz-Veselka, L. Grüner-Nielsen, and A.J. Stentz, Raman amplification for loss compensation in dispersion compensating fibre modules, Electron. Lett., 34:11, 1136–1137, 1998.CrossRefGoogle Scholar
  2. [2]
    Y. Emori, Y. Akasaka, and S. Namiki, Broadband lossless DCF using Raman amplification pumped by multichannel WDM laser diodes, Electron. Lett., 34:22, 2145–2146, 1998.CrossRefGoogle Scholar
  3. [3]
    A.H. Gnauck, G Raybon, S. Chandrasekhar, J. Leuthold, et al., 2.5 Tb/s (64 × 42.7 Gb/s) Transmission over 40 × 100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans, In Proceedings of OFC’02, FC2, 2002.Google Scholar
  4. [4]
    B. Zhu, L. Leng, L.E. Nelson, L. Grüner-Nielsen, Y Qian, J. Bromage, S. Stulz, S. Kado, Y Emori, S. Namiki, P. Gaarde, A. Judy, B. Palsdottir, and R. Lingle, 3.2-Tb/s (80 × 42.7 Gb/s) Transmission over 20 × 100 km of non-zero dispersion fibre with simultaneous C + L-band dispersion compensation, In Proceedings of OFC’02, FC8, 2002.Google Scholar
  5. [5]
    K. Petermann, Constraints for fundamental-mode spot size for broadband dispersion-compensated singlemode fibres, Electron. Lett,, 19:18, 712–714, 1983.CrossRefGoogle Scholar
  6. [6]
    G.P. Agrawal, Nonlinear Fiber Optics, 3d ed., San Diego: Academic Press, 2001.Google Scholar
  7. [7]
    J.-X. Cai, M. Nissov, C.R. Davidson, Y Cai, A.N. Pilipetskii, H. Li, M.A. Mills, R.-M. Mu, U. Feiste, L. Xu, A. J. Lucero, D.G Foursa, and N.S. Bergano, Transmission of thirty-eight 40 Gb/s channels (> 1.5 Tb/s) over transoceanic distance. In Proceedings of OFC 2002, FC4, 2002.Google Scholar
  8. [8]
    G Vareille, B. Julien, F. Pitel, and J.F Marcerou, 3.65 Tbit/s (365 × 11.6 Gbit/s) Transmission experiment over 6850 km using 22.2 GHz channel spacing in NRZ format. In Proceedings of ECOC 2001, PD.M1.7, 2001.Google Scholar
  9. [9]
    C. Rasmussen, S. Dey, F. Liu, J. Bennike, B. Mikkelsen, P. Mamyshev, M. Kimmitt, K. Springer, D. Gapontsev, and V. Ivshin, Transmission of 40 × 42.7 Gbit/s over 5200 km UltraWave fiber with terrestrial 100 km spans using turn-key ETDM transmitter and receiver. In Proceedings of ECOC 2002, PD4.4, 2002.Google Scholar
  10. [10]
    B. Zhu, L. Leng, A.H. Gnauck, M.O. Pedersen, D. Peckham, L.E. Nelson, S. Stulz, S. Kado, L. Grüner-Nielsen, R.L. Lingle Jr., S. Knudsen, J.U. Leuholdt, C. Doerr, S. Chan-drasekhar, G Baynham, P. Gaarde, Y. Emori, and S. Namiki, Transmission of 3.2 Tb/s (80 × 42.7 Gbit/s) over 5200 km of UltraWave fiber with 100 km dispersion-managed spans using RZ_DPSK format. In Proceedings of ECOC 2001, PD4.2, 2002.Google Scholar
  11. [11]
    R.J. Nuyts, Y.K. Park, and P. Gallion, Dispersion equalization of a 10 Gb/s repeater transmission system using dispersion compensating fibers. J. Lightwave Technol., 15:1, 31–42, 1997.CrossRefADSGoogle Scholar
  12. [12]
    M. Wandel, P. Kristensen, T. Veng, Y. Qian, Q. Le, and L. Grüner-Nielsen, Dispersion compensating fibers for non-zero dispersion fibers, Technical Digest of OFC’2002, WU1, 2002.Google Scholar
  13. [13]
    A.J. Antos and D.K. Smith, Design and characterization of dispersion compensating fiber based on the LP01 mode, J. Lightwave Technol., 12:10, 1739–1745, 1994.CrossRefADSGoogle Scholar
  14. [14]
    L. Grüner-Nielsen, S.N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C.C. Larsen, and H. Damsgaard, Dispersion compensating fibers, Optic. Fiber Technol., 6:164–180, 2000.CrossRefADSGoogle Scholar
  15. [15]
    T. Kato, Design optimisation of dispersion compensating fiber for NZ-DSF considering nonlinearity and packaging performance. In Proceedings of OFC2001, TuS6, 2001.Google Scholar
  16. [16]
    M.J. Li, Recent progress In fiber dispersion compensators. In Proceedings of ECOC2001, Th.M.1.1, 2001.Google Scholar
  17. [17]
    L. Grüner-Nielsen and B. Edvold, Status and future promises for dispersion-compensating fibers. In Proceedings of ECOC’02, 6.1.1, 2002.Google Scholar
  18. [18]
    M. Wandel, T. Veng, Q. Le N.T., and L. Grüner-Nielsen, Dispersion compensating fibre with a high figure of merit. In Proceedings of ECOC’01, PD.A.1.4, 2001.Google Scholar
  19. [19]
    C.D. Poole, J.M. Wiesenfeld, D.J. DiGiovanni, and A.M. Vengsarkar, Optical fiber-based dispersion compensation using higher order modes near cut-off, J. Lightwave Technol. 12:10, 1746–1758, 1994.CrossRefADSGoogle Scholar
  20. [20]
    A.H. Gnauck, L.D. Garrett, Y Danziger, U. Levy, and M. Tur, Dispersion and dispersion-slope compensation of NZDSF over the entire C band using higher-order-mode fibre, Electron. Lett., 36: 1946, 2000.CrossRefGoogle Scholar
  21. [21]
    S. Ramachandran, B. Mikkelsen, L.C. Cowsar, M.F. Yan, G Raybon, L. Boivin, M. Fishteyn, W.A. Reed, P. Wisk, D. Brownlow, and L. Grüner-Nielsen, All-fiber, grating-based, higher-order-mode dispersion compensator for broadband compensation and 1000-km transmission at 40-Gb/s, Photon. Technol. Lett., 13:6, 632–634, 2001.CrossRefADSGoogle Scholar
  22. [22]
    L. Grüner-Nielsen, Y Qian, B. Pálsdóttir, Y Qian, P.B. Gaarde, S. Dyrbøl, T. Veng, R. Boncek, and R. Lingle, Module for simultaneous C + L-band dispersion compensation and Raman amplification, OFC’02, TuJ6, 2002.Google Scholar
  23. [23]
    T. Miyamoto, T. Tsuzaki, T. Okuno, M. Kakui, M. Hirano, M. Onishi, and M. Shigematsu, Raman amplification over 100nm-bandwidth with dispersion and dispersion slope compensation for conventional single mode fiber. In Proceedings of OFC’02, TuJ7, 2002.Google Scholar
  24. [24]
    L. Grüner-Nielsen, B. Edvold, D. Magnussen, D. Peckham, A. Vengsarkar, D. Jacobsen, T. Veng, C.C. Larsen, and H. Damsgaard, Large volume manufacturing of dispersion compensating fibres, Technical Digest of OFC’98, 24–25, 1998.Google Scholar
  25. [25]
    Y Qian, J.H. Povlsen, S.N. Knudsen, and L. Grüner-Nielsen, Fiber Raman amplifications with dispersion compensating fibers, Trends Optics Photon. Series TOPS, 44: 36–43, 2000.Google Scholar
  26. [26]
    Y. Qian, J.H. Povlsen, S.N. Knudsen, and L. Grüner-Nielsen, Fiber Raman amplifications with single-mode fibers, Trends Optics and Photon. Series TOPS, 44: 128–134, 2000.Google Scholar
  27. [27]
    P.B. Hansen, L. Eskildsen, A.J. Stentz, T.A. Strasser, J. Judkins, J.J. DeMarco, R. Pedrazzani, and D.J. DiGiovanni, Rayleigh scattering limitations in distributed Raman preamplifiers, IEEE Photon. Technol. Lett., 10:1, 159–161, 1998.CrossRefADSGoogle Scholar
  28. [28]
    M. Nissov, K. Rottwitt, H.D. Kidorf, and M.X. Ma, Rayleigh crosstalk in long cascades of distributed unsaturated Raman amplifiers, Electron. Lett., 35:12, 997–998, 1999.CrossRefGoogle Scholar
  29. [29]
    V.E. Perlin and H.G Winful, On trade-off between noise and nonlinearity in WDM systems with distributed Raman amplification. In Proceedings of OFC’02, WB1, 2002.Google Scholar
  30. [30]
    A. Artamonov, V. Smokovdin, M. Kleshov, S.A.E. Lewis, and S.V. Chernikov, Enhancement of double Rayleigh scattering by pump intensity noise in fiber Raman amplifier. In Proceedings of OFC’02, WB6, 2002.Google Scholar
  31. [31]
    C.H. Kim, J. Bromage, and R.M. Jopson, Reflection-induced penalty in Raman amplified systems, IEEE Photon. Technol. Lett., 14:4, 2002.Google Scholar
  32. [32]
    A.F. Judy, An OTDR based combined end-reflection and backscatter measurement. In Proceedings of SOFM, 19–22, 1992.Google Scholar
  33. [33]
    P.B. Gaarde, Y Qian, S.N. Knudsen, and B. Pálsdóttir, Predicting MPI in Raman optical amplifiers by measuring the Rayleigh backscattering coefficient. In Proceedings of SOFM’02, 2002.Google Scholar
  34. [34]
    T. Tanaka, K. Torii, M. Yuki, H. Nakamoto, T. Naito, and I. Yokota, 200-nm bandwidth WDM transmission around 1.55mum using distributed Raman amplifier. In Proceedings of ECOC’02, PD4.6, 2002.Google Scholar
  35. [35]
    D.A. Chestnut, C.J.S. de Matos, P.C. Reeves-Hall, and J.R. Taylor, Co-and counter-propagating second-order-pumped lumped fiber Raman amplifiers. In Proceedings of OFC’02, ThB2, 2002.Google Scholar
  36. [36]
    J. Bromage, H.J. Thiele, and L.E. Nelson, Raman amplification in the S-band. In Proceedings of OFC’02, ThB3, 2002.Google Scholar
  37. [37]
    Y Qian, C.G Jørgensen, P.B. Gaarde, B. Pálsdóttir, and B. Edvold, C-band discrete Raman amplification with simultaneous dispersion and dispersion-slope compensation for NZDF. In Proceedings of OAA’02, OWB2, 2002.Google Scholar
  38. [38]
    D.F. Grosz, A. Agarwal, S. Banerjee, A.P. Kung, D.N. Maywar, A. Gurecich, T.H. Wood, C.R. Lima, B. Faer, J. Black, and C. Hwu, 5.12 Tb/s (128 × 42.7 Gb/s) Transmission with 0.8bit/s/Hz spectral efficiency over 1280 km of standard single-mode fiber using all-Raman amplification and strong signal filtering. In Proceedings of ECOC’02, PD4.3, 2002.Google Scholar
  39. [39]
    L.F. Mollenauer, Dispersion managed solitons for ultra long distance, Terabit WDM. In Proceedings of OFC’00, Tutorial 5, 2000.Google Scholar
  40. [40]
    P.J. Winzer, K. Sherman, and M. Zirngibl, Experimental demonstration of time-division multiplexed Raman pumping. In Proceedings of OFC’02, WB5, 2002.Google Scholar
  41. [41]
    G Charlet, W. Idler, R. Dischler, J.-C. Antona, P. Tran, and S. Bigo, 3.2Tbit/s (80’42.7 Gb/s) C-Band transmission over 9’100 km of TeraLightTM fiber with 50 GHz channel spacing. In Proceedings of OAA’02, PD1, 2002.Google Scholar
  42. [42]
    Y Qian, S. Dyrbøl, J.S. Andersen, P.B. Gaarde, C.G. Jørgensen, B. Pálsdóttir, and L. Grüner-Nielsen, Bidirectionally pumped discrete Raman amplifier with optimized dispersion compensation for non-shifted transmission fibre. In Proceedings of ECOC’02, 6.4.1, 2002.Google Scholar
  43. [43]
    S.A.E. Lewis, S.V. Chernikov, and J.R. Taylor, Characterization of double Rayleigh scatter noise in Raman amplifiers, IEEE Photon. Technol. Lett., 12: 528–530, 2000.CrossRefADSGoogle Scholar
  44. [44]
    C.R.S. Fludger and R.J. Mears, Electrical measurements of multipath interference in distributed Raman amplifiers; J. Lightwave Technol., 19:4, 536, 2001.CrossRefADSGoogle Scholar
  45. [45]
    M.O. van Deventer, Polarization properties of Rayleigh backscattering in single-mode fibers, J. Lightwave Technol., 11: 1895–1899, 1993.CrossRefADSGoogle Scholar
  46. [46]
    V. Smokovdin, S.A.E. Lewis, and S.V. Chernikov, Direct comparison of electrical and optical measurements of double Rayleigh scatter noise. In Proceedings of ECOC’02, S3.5, 2002.Google Scholar
  47. [47]
    S.A.E. Lewis, S.V. Chernikov, and J.R. Taylor, Temperature-dependent gain and noise in fiber Raman amplifiers, Opt. Lett., 24:24, 1999.Google Scholar
  48. [48]
    S. Burtsev, W. Pelouch, and P. Gavrilovic, Multi-path interference noise in multi-span transmission links using lumped Raman amplifiers. In Proceedings of OFC’02, TuR4, 2002.Google Scholar
  49. [49]
    J. Bromage, L.E. Nelson, C.H. Kim, P.J. Winzner, F-J. Essiambre, and R.M. Jopson, Relative impact of multiple-path interference and amplified spontaneous emission noise on optical receiver performance. In Proceedings of OFC’02, TuR3, 2002.Google Scholar
  50. [50]
    A. Artamonov, V. Smokovdin, M. Kleshov, S.A.E. Lewis, and S.V. Chernikov, Enhancement of double Rayleigh scattering by pump intensity noise in fiber Raman amplifier. In Proceedings of OFC’02, WB6, 2002.Google Scholar
  51. [51]
    P. Parolari, L. Marazzi, L. Bernardini, and M. Martinelli, Double Rayleigh backscatter noise measurements in discrete and distributed Raman amplifiers. In Proceedings of OAA’02, OWA3, 2002.Google Scholar
  52. [52]
    R. Essiambre, P. Winzer, J. Bromage, and C.H. Kim, Design of bidirectionally pumped fiber amplifiers generating double Rayleigh backscattering, IEEE Phonton. Techonol. Lett., 14:7, 914–916, 2002.CrossRefADSGoogle Scholar
  53. [53]
    H.J. Thiele, J. Bromage, and L. Nielsen, Impact of discrete Raman amplifier architecture on nonlinear impairments. In Proceedings of ECOC’02, 7.0.2, 2002.Google Scholar
  54. [54]
    A.J. Stenz, S.G. Grubb, C.E. Headley, J.R. Simponson, T. Strasser, and N. Park, Raman amplifier with improved system performance. In Proceedings of OFC’96, TuD3, 1996.Google Scholar
  55. [55]
    D. Hamoir, J. Boniort, L. Gasca, and D. Bayart, Optimized, two-stage architecture for Raman amplifiers. In Proceedings of OAA’00, OMD8, 2000.Google Scholar
  56. [56]
    T. Tsuzaki, T. Miyamoto, T. Okuno, M. Kakui, M. Hirano, M. Onishi, and M. Shigematsu, Impact of double Rayleigh backscattering in discrete fiber Raman amplifiers employing highly nonlinear fiber. In Proceedings of OAA’02, OWA2, 2002.Google Scholar
  57. [57]
    C.R.S. Fludger, V. Handerek, and R.J. Mears, Pump to signal RIN transfer in Raman fibre amplifiers, J. Lightwave Technol., 19:8, 1140–1148, 2001.CrossRefADSGoogle Scholar
  58. [58]
    M.D. Mermelstein, C. Headley, and J.-C. Bouteiller, RIN transfer analysis in pump depletion regime for Raman fibre amplifiers, Electron. Lett., 38:9, 403–405, 2002.CrossRefGoogle Scholar
  59. [59]
    S. Kado, Y. Emori, and S. Namiki, Gain and noise tilt control in multi-wavelength bidirectionally pumped Raman amplifier. In Proceedings of OFC’02, TuJ4, 2002.Google Scholar
  60. [60]
    A.F. Evans, J. Grochocinski, A. Rahman, C. Reynolds, and M. Vasilyev, Distributed amplification: How Raman gain impacts other fiber nonlinearities. In Proceedings of OFC’01, MA7, 2001.Google Scholar
  61. [61]
    J. Bromage, P.J. Winzner, L.E. Nelson, and C.J. McKinstrie, Raman-enhanced pump-signal four-wave mixing in bidirectionally-pumped Raman amplifiers. In Proceedings of OAA’02, OWA5, 2002.Google Scholar
  62. [62]
    Q.L.N.T., C.G. Jørgensen, L.G Grüner-Nielsen, and B. Pálsdóttir, Enhancement of nonlinear response of a highly nonlinear fibre due to Raman amplification. In Proceedings of ECOC’02, 2002.Google Scholar
  63. [63]
    T. Okuno, T. Tsuzaki, H. Hirano, T. Miyamoto, M. Kakui, M. Onishi, Y, Nakai, and M. Nishimura, Nonlinear-fiber-based discrete Raman amplifier with sufficiently suppressed degradation of WDM signal quality. In Proceedings of OAA’1, OTuB5, 2001.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • L. Grüner-Nielsen
  • Y. Qian

There are no affiliations available

Personalised recommendations