Advertisement

Overview of Raman Amplification in Telecommunications

  • Mohammed N. Islam
Part of the Springer Series in Optical Sciences book series (SSOS, volume 90/1)

Abstract

In the early 1970s, Stolen and Ippen [1] demonstrated Raman amplification in optical fibers. However, throughout the 1970s and the first half of the 1980s, Raman amplifiers remained primarily laboratory curiosities. In the mid-1980s, many research papers elucidated the promise of Raman amplifiers, but much of that work was overtaken by erbium-doped fiber amplifiers (EDFAs) by the late 1980s. However, in the mid to late 1990s, there was a resurgence of interest in Raman amplification. By the early part of the 2000s, almost every long-haul (typically between 300 and 800 km) or ultra-long-haul (typically longer than 800 km) fiber-optic transmission system uses Raman amplification. There are some fundamental and technological reasons for the interest in Raman amplifiers that this book explores.

Keywords

Pump Power Optical Society Pump Wavelength Optical Fiber Communication Gain Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. H. Stolen and E. P. Ippen, Raman gain in glass optical waveguides. Appl. Phys. Lett., 22:6, 1973.Google Scholar
  2. [2]
    G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed., New York: Academic, 1995.Google Scholar
  3. [3]
    R. H. Stolen, Polarization effects in fiber Raman and Brillouin lasers, IEEE J. Quantum Electron., 15:1157, 1979.CrossRefADSGoogle Scholar
  4. [4]
    R. B. Kummer, Fiber issues for nontraditional wavelength bands. In Proceedings of the Optical Fiber Communication Conference, Technical Digest, Washington DC: Optical Society of America, ThR1-1, 2000.Google Scholar
  5. [5]
    K. Rottwitt and M. Nissov, Detailed analysis of Raman amplifiers for long-haul transmission. In Proceedings of the Optical Fiber Communication Conference, Technical Digest, Conference Edition Washington DC: Optical Society of America, TuG1, 1998.Google Scholar
  6. [6]
    K. L. Walker, Status and challenges of optical fiber amplifiers and lasers. In Optical Amplifiers and their Applications 1998, OSA Technical Digest, Optical Society of America, MB1-1, 1998.Google Scholar
  7. [7]
    S. Namiki and Y. Emori, Broadband Raman amplifiers design and practice. In Optical Amplifiers and Their Applications, OSA Technical Digest Washington DC: Optical Society of America, OMB2. 2000.Google Scholar
  8. [8]
    E. Desurvire, Erbium-Doped Fiber Amplifiers Principles and Applications, New York: Wiley, 1994.Google Scholar
  9. [9]
    A. J. Stentz, T. Nielsen, S. G. Grubb, T. A. Strasser, and J. R. Pedrazzani, Raman ring amplifier at 1.3 μm with analog-grade performance and an output power of 23 dBm. In Proceedings of the Optical Fiber Communication Conference, Technical Digest, Post-conference Edition Washington DC: Optical Society of America, Post-deadline paper 16, 1996.Google Scholar
  10. [10]
    J. Yoshida, N. Tsukiji, A. Naki, T. Fukushima, and A. Kasukawa, Highly reliable high power 1480nm pump lasers. In Testing, Reliability, and Application of Optoelectronic Devices (Bellingham, WA: SPIE, Society of Photo-Optical Instrumentation Engineers, Proceedings of SPIE, Vol. 4285, 146–158, 2001.)Google Scholar
  11. [11]
    A. Mathur, M. Ziari, and V. Dominic, Record 1 Watt fiber-coupled-power 1480 nm diode laser pump for Raman and erbium doped fiber amplification. In Proceedings of the Optical Fiber Communication Conference, Technical Digest, Postconference Edition Washington DC: Optical Society of America, Post-deadline paper 15, 2000.Google Scholar
  12. [12]
    A. B. Puc, M. W. Chbat, J. D. Henrie, N. A. Weaver, H. Kim, A. Kaminski, A. Rahman, and H. A. Fevrier, Long-haul WDM NRZ transmission at 10.7 Gb/s in S-band using cascade of lumped Raman amplifiers. In Proceedings of the Optical Fiber Communication Conference, Technical Digest, Postconference Edition Washington DC: Optical Society of America, Post-deadline paper 39.Google Scholar
  13. [13]
    V. Dominic, E. Mao, J. Zhang, B. Fidric, S. Sanders, and D. Mehuys, Distributed Raman amplification with co-propagating pump light. In Optical Amplifiers and Their Applications, OSA Technical Digest Washington DC: Optical Society of America, OMC5, 2001.Google Scholar
  14. [14]
    C. R. S. Fludger and V. Henderek, Fundamental noise limits in broadband Raman amplifiers. In Proceedings of the Optical Fiber Communication Conference, Technical Digest, Postconference Edition Washington DC: Optical Society of America, MA5, 2001.Google Scholar
  15. [15]
    S. A. Lewis, S. V. Chernikov, and J. R. Taylor, Temperature-dependent gain and noise in fiber Raman amplifiers, Optics Lett., 24:24 (Dec.), 1823–1825, 1999.Google Scholar
  16. [16]
    H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, Pump interactions in a 100-nm bandwidth Raman amplifier,” IEEE Phot on. Technol. Lett. 11:5, 1999.Google Scholar
  17. [17]
    S. Namiki and Y. Emori, Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes, IEEE J. Select. Topics Quantum Electron., 7:1, 3–16, 2001.CrossRefGoogle Scholar
  18. [18]
    Y Emori, Y Akasaka, and S. Namiki, Less than 4.7 dB noise figure broadband in-line EDFA with a Raman amplified—1300 ps/nm DCF pumped by multi-channel WDM laser diodes. In Proceedings of Optical Amplifiers and Their Applications, PD3, 1998.Google Scholar
  19. [19]
    Y Emori and S. Namiki, 100 nm bandwidth flat gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel WDM high power laser diodes, In Proceedings of the Optical Fiber Communication Conference, PD19, 1999. Y Emori, Y Akasaka, and S. Namiki, 100 nm bandwidth flat-gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel WDM laser diode unit, Electron Lett., 35:1355-1356, 1999.Google Scholar
  20. [20]
    C. R. S. Fludger, V. Handerek, and R. J. Mears, Ultra-wide bandwidth Raman amplifiers. In Proceedings of the Optical Fiber Communication Conference, Technical Digest, 60–62, TuJ3, 2002.Google Scholar
  21. [21]
    T. Naito, T. Tanaka, K. Torii, N. Shimojoh, H, Nakamoto, and M. Suyama, A broadband distributed Raman amplifier for bandwidths beyond 100nm. In Proceedings of the Optical Fiber Communication Conference, Technical Digest, TuR1, 116–117, 2002.Google Scholar
  22. [22]
    H. Masuda, S. Kawai, K. I. Suzuki, and K. Aida, 75-nm 3-dB Gain-band optical amplification with erbium doped fluoride fibre amplifiers and distributed Raman amplifiers in 9×2.5 Gb/s WDM transmission experiment. In Proceedings of the European Conference on Optical Communications, vol. 5, PDP, 74–74, 1997.Google Scholar
  23. [23]
    H. Takara, H. Masuda, K. Mori, K. Sato, Y. Inoue, T. Ohara, A. Mori, M. Mohtuku, Y. Miyamoto, and S. Kawanishi, Ultra-wideband tellurite/silica fiber Raman amplifier and supercontinuum lightwave source for 124-nm seamless bandwidth DWDM transmission. In Proceedings of the Optical Fiber Communication Conference, Paper FB1, 2002.Google Scholar
  24. [24]
    A. H. Gnauck, G. Raybon, D. Grosz, S. Hunsche, A Kung, A. Marhelyuk, D. Maywar, M. Movassaghi, X. Liu, C. Xu, X. Wei, and D. M. Gill, 2.5Tb/s (64 × 42.7 Gb/s) Transmission over 40 × 100 km NZDSF using RZ-DPSK format and all-Raman-amplied spans. In Proceedings of the Optical Fiber Communication Conference, FC2, 2002.Google Scholar
  25. [25]
    F Liu, J. Bennike, S. Dey, C. Rasmussen, B. Mikkelsen, P. Mamyshev, D. Gapontsev, and V. Ivshin, 1.6 Tbit/s (40 × 42.7 Gbit/s) Transmission over 3600 km UltraWaveTM fiber with all-Raman amplified 100 km terrestrial spans using ETDM transmitter and receiver. In Proceedings of the Optical Fiber Communication Conference, FC7, 2002.Google Scholar
  26. [26]
    Zhu, L. Leng, L. E. Nelson, L. Grüner-Nielsen, Y Qian, J. Bromage, S. Stulz, S. Kado, Y. Emori, S. Namiki, P. Gaarde, A. Judy, B. Palsdottir, and R. L. Lingle, Jr., 3.2 Tb/s (80 × 42.7 Gb/s) Transmission over 20 × 100 km of non-zero dispersion fiber with simultaneous C+L-band dispersion compensation. In Proceedings of the Optical Fiber Communication Conference, Paper FC8, 2002.Google Scholar
  27. [27]
    L. Grüner-Nielsen, Y Qian, B. Pálsdóttir, P. B. Gaarde, S. Dyrbol, and T. Verg, Module for simultaneous C+L-band dispersion compensation and Raman amplification. In Proceedings of the Optical Fiber Communication Conference, Technical Digest, TuJ6, 65–66, 2002.Google Scholar
  28. [28]
    H. Masuda, S. Kawai, and K.-I. Suzuki, Optical SNR enhanced amplification in longdistance recirculating-loop WDM transmission experiment using 1580nm band hybrid amplifier, Electron Lett., 35:411–412, 1999.CrossRefGoogle Scholar
  29. [29]
    P. B. Hansen, G Jacobovitz-Veselka, L. Grüner-Nielsen, and A. J. Stentz, Raman amplification for loss compensation in dispersion compensating fiber modules, Electron. Lett., 34:1136–1137, 1998.CrossRefGoogle Scholar
  30. [30]
    Y Emori, Y Akasaka, and S. Namiki, Broadband losses DCF using Raman amplification pumped by multichannel WDM laser diodes, Electron Lett., 34:2145–2146, 1998.CrossRefGoogle Scholar
  31. [31]
    S. A. E. Lewis, S. V. Chrenikov, and J. R. Taylor, Broadband high-gain dispersion compensating Raman amplifier, Electron Lett., 36:1355–1356, 2000.zbMATHCrossRefGoogle Scholar
  32. [32]
    M. Nissov, C. R. Davidson, K. Rottwitt, R. Menges, P. C. Corbett, D. Innis, and N. S. Bergano, 100 Gb/s (10 × 10 Gb/s) WDM transmission over 7200 km using distributed Raman amplification. In Proceedings of the European Conference on Optical Communication 1997, PD., 9–12, 1997.Google Scholar
  33. [33]
    P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J.J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, Rayleigh scattering limitations in distributed Raman pre-amplifiers. IEEE Photon. Technol. Lett. 10:159–161, 1998.CrossRefADSGoogle Scholar
  34. [34]
    N. S. Bergano, Undersea amplified lightwave system design. In Optical Fiber Telecommunications IIIA, ed. S. E. Miller and I. P. Kaminow, Boston: Academic, 302–332, 1997.CrossRefGoogle Scholar
  35. [35]
    T. Terahara, T. Hoshida, J. Kumasako, and H. Onaka, 128 × 10.66 Gbit/s Transmission over 840-km standard SMF with 140-km optical repeater spacing (30.4-dB loss) employing dual-band distributed Raman amplification. In Proceedings of the Optical Fiber Communication Conference, Postconference Edition, Washington DC: Optical Society of America, Post-deadline paper 28, 2000.Google Scholar
  36. [36]
    L. D. Garrett, M. Eiselt, and R. W. Tkach, Field demonstration of distributed Raman amplification with 3.8dB Q-improvement for 5 × 120 km transmission. In Proceedings of the Optical Fiber Communication Conference, Postconference Edition Washington DC: Optical Society of America, Post-deadline paper 42, 2000.Google Scholar
  37. [37]
    T. N. Nielsen, A. J. Stents, K. Rottwitt, D. S. Vengsarkar, Z. J. Chen, P. B. Hansen, J. H. Park, K. S. Feder, S. Cabot, S. Stulz, D. W. Peckham, L. Hsu, C. K. Kan, A. F. Judy, S. Y. Park, L. E. Nelson, and L. Grüner-Nielsen, 3.28-Tb/s Transmission over 3 × 100 km of nonzero-dispersion fiber using dual C-and L-band distributed Raman amplification, IEEE Photon. Technol. Lett., 12:8, 1079–1081, 2000.CrossRefADSGoogle Scholar
  38. [38]
    H. Suzuki, J. Kani, H. Masuda, N. Takachio, K. Iwatsuki, Y. Tada, and M. Sumida, 25GHz-Spaced, 1 Tb/s (100 × 10 Gb/s) super dense-WDM transmission in the C-band over a dispersion-shifted fiber cable employing distributed Raman amplification. In Proceedings of the European Conference on Optical Communication, PD 30–31, 1999.Google Scholar
  39. [39]
    T. N. Nielsen, P. B. Hansen, A. J. Stebtz, V. M. Aquaro, J. R. Pedrazzani, A. A. Abramov, and R. P. Espindola, 8 × 10 Gb/s 1.3-μm Unrepeatered transmission over a distance of 141 km with Raman post-and pre-amplifiers, IEEE Photon. Technol. Lett., 10:10, 1492–1494, 1998.CrossRefADSGoogle Scholar
  40. [40]
    A. K. Srivastava, D. L. Tzeng, A. J. Stentz, J. E. Johnson, M. L. Pearsall, O. Mizuhara, T. A. Strasser, K. F. Dreyer, J. W. Sulhoff, L. Zhang, P. D. Yates, J. R. Pedrazzani, A. M. Sergent, R. E. Tench, J. M. Freund, T.V. Nguyen, H. Manzar, Y Sun, C. Wolf, M. M. Choy, R. B. Kummer, D. Kalish and A. R. Chraplyvy, High-speed WDM transmission in all wave fiber in both the 1.4-μm and 1.55-μm Bands, Optical Amplifiers and Their Applications 1998, OSA Technical Digest Washington DC: Optical Society of America, PD2, 1998.Google Scholar
  41. [41]
    S. G Grubb and A. J. Stentz, Fiber Raman lasers emit at many wavelengths, Laser Focus World, (Feb.), 127–134, 1996.Google Scholar
  42. [42]
    J. Bromage, H. J. Thiele, and L. E. Nelson, Raman amplification in the S-band. In Proceedings of the Optical Fiber Communication Conference, Technical Digest, ThB3, 383–385, 2002.Google Scholar
  43. [43]
    J. L. Gimlett and N. K. Cheung, Effects of phase-to-intensity noise conversion by multiple reflections on gigabit-per-second DFB laser transmission systems, J. Lightwave Technol. 7: 888–895, 1989.CrossRefADSGoogle Scholar
  44. [44]
    P. B. Hansen, A. Stentz, T. N. Nielsen, R. Espindola, L. E. Nelson, and A. A. Abramov, Dense wavelength-division multiplexed transmission in “zero-dispersion” DSF by means of hybrid Raman/erbium-doped fiber amplifiers. In Proceedings of the Optical Fiber Communication Conference, PD8–1, 1999.Google Scholar
  45. [45]
    K. Rottwitt and H. D. Kidorf, A 92nm bandwidth Raman amplifier. In Proceedings of the Optical Fiber Communication Conference, Paper PD6, 1998.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • Mohammed N. Islam

There are no affiliations available

Personalised recommendations